

NIEM NDR Page 1 of 81
Draft Version 0.3
September 30, 2006

NIEM NDR September 30, 2006 1

National Information Exchange Model 2

Naming and Design Rules and 3

Data Modeling Guidelines 4

Draft Version 0.3 5

September 30, 2006 6

Editor: 7

Webb Roberts, Georgia Institute of Technology 8

Contributors: 9

Abstract: 10

This document specifies the data model, XML artifacts, and XML data for use with the National 11
Information Exchange Model. 12

Status: 13

This document is an early draft of a specification for NIEM-conformant XML components. This document 14
is incomplete, and will undergo considerable revision before being approved for use. 15

Please make comments on this specification via email to niem-comments@lists.gatech.edu. 16

NIEM NDR Page 2 of 81
Draft Version 0.3
September 30, 2006

Table of Contents 17
1. Introduction 4 18

1.1. The NIEM Reference Architecture (In Brief) 4 19
1.2. Scope 5 20
1.3. Audience 5 21
1.4. Document Conventions 5 22
1.5. Syntax and Formatting 7 23

2. Key Concepts and Terminology 9 24
 XML data may be referred to as a NIEM-conformant instance if it conforms to this specification 10 25
3. Guiding Principles 11 26

3.1. Specification Principles 11 27
3.2. Data Model Principles 11 28
3.3. Principles in the use of XML 12 29

4. Relation to Standards 15 30
4.1. XML 1.0 15 31
4.2. XML Namespaces 15 32
4.3. XML Schema 15 33
4.4. ISO 11179 15 34

5. Naming Rules 19 35
5.1. Usage of English 19 36
5.2. Characters in Names 19 37
5.3. Use of Acronyms and Abbreviations 19 38
5.4. Singular and Plural Forms 20 39
5.5. Character Case 20 40

6. Normalized Structure Design Rules 21 41
6.1. Structures Namespace 21 42

7. General Schema Design Rules 25 43
7.1. Mixed Content 25 44
7.2. Notations 25 45
7.3. Schema Document Element 25 46
7.4. Top-Level Constructs 26 47
7.5. Import of Namespaces 27 48
7.6. General Type Definitions 28 49
7.7. Simple Type Definitions 29 50
7.8. Complex Type Definitions 30 51
7.9. Element Definitions 31 52
7.10. Element and Attribute Definitions 32 53
7.11. Attribute Declarations 32 54

8. Annotation Design Rules 34 55
8.1. User Information ("documentation") Elements 34 56
8.2. Application Information ("appinfo") Elements 34 57
8.3. Documented Components 35 58
8.4. Types of Annotations in Reference Schemas 35 59
8.5. NIEM appinfo Namespace 36 60

NIEM NDR Page 3 of 81
Draft Version 0.3
September 30, 2006

9. Subset Schemas Design Rules 37 61
9.1. Schema Document Element 38 62
9.2. Annotations 38 63
9.3. Simple Type Definition 38 64
9.4. Simple Content Definition 38 65
9.5. Complex Type Definition 39 66
9.6. Attribute Declarations 39 67
9.7. Complex Content 40 68
9.8. Element Definition 41 69

10. Constraint Schema Design Rules 42 70
11. Extension Schema Design Rules 43 71
12. Document Schema Design Rules 44 72
13. Conformant Instance Rules 45 73
14. NIEM Data Modeling Guide 46 74

14.1. Overview of Data Modeling 46 75
14.2. Normalizing Element Use 51 76
14.3. Element Substitution 52 77
14.4. Roles 56 78
14.5. Associations 57 79
14.6. Metadata 61 80
14.7. Class Augmentation in NIEM 66 81
14.8. Using Non-NIEM XML Dialects with NIEM 69 82

Appendix A. Supporting Files 75 83
Appendix A.1. Schema for Structures Namespace 75 84
Appendix A.2. Schema for entity appinfo namespace 75 85
Appendix A.3. Schema for xml namespace 76 86

Appendix B. Normative Abbreviations 77 87
Appendix C. References 78 88
Appendix D. Revision History 79 89
Appendix E. Glossary 80 90
Appendix F. Notices 81 91

 92

NIEM NDR Page 4 of 81
Draft Version 0.3
September 30, 2006

1. Introduction 93

This document specifies the National Information Exchange Model (NIEM), an information sharing framework 94
based on the World Wide Web Consortium (W3C) eXtensible Markup Language (XML) Schema. In February 95
2005, the U.S. Departments of Justice (DoJ) and Homeland Security (DHS) signed a cooperative agreement to 96
jointly develop the NIEM by leveraging and expanding the Global Justice XML Data Model (GJXDM) into multiple 97
domains. The NIEM is a result of a combined government and industry effort to improve information 98
interoperability and exchange within the U.S. at federal, state, tribal, and local levels of government. 99

The NIEM specifies a set of reusable information components for defining standard information exchange 100
messages, transactions, and documents on a large scale across multiple communities of interest and lines of 101
business. These reusable components are rendered in W3C XML Schema. The resulting schemas are available 102
to government practitioners and developers at http://niem.gov/. 103

The W3C XML Schema standard was designed to enable information interoperability and sharing by providing a 104
common, extensible language for describing data precisely. The constructs it defines are basic metadata building 105
blocks – baseline data types and structural components. Users employ these building blocks to describe their 106
own domain-oriented data semantics and structures. A reasonable set of rules and constraints governing what 107
XML Schema constructs are allowed and how to use them (i.e. a framework) helps to ensure that resulting user 108
data components can be reused and shared consistently. This enhances information interoperability. 109

The NIEM Naming and Design Rules specify principles and enforceable rules for NIEM data components and 110
schemas. This document is a product of the NIEM Program Management Office. Audience 111

The primary audience for this document is the justice practitioners and developers who employ XML for 112
information exchange and interoperability. The XML schemas rendered from the NIEM still offer schema 113
designers much flexibility and freedom to extend types and create new properties to satisfy requirements at the 114
local level. However, these rules are intended to establish and, more importantly, enforce a degree of 115
standardization at the national level. 116

1.1. The NIEM Reference Architecture (In Brief) 117

The NIEM is a reference model of unconstrained components rendered in XML Schema. Associated with the 118
NIEM schemas is an XML reference architecture that organizes and guides the employment of the various kinds 119
of schemas that compose a NIEM information exchange. The XML reference architecture is a visual 120
representation of the relationships between XML schemas for NIEM Information Exchange Package 121
Documentation (IEPD) depicted in Figure 1. A NIEM IEPD is a set of artifacts that describe an Information 122
Exchange Package, a standard message structure as defined by the Federal Enterprise Architecture 123
Consolidated Reference Model Document. Refer to the Global JXDM Information Exchange Package 124
Documentation Guidelines, Version 1.1 for a more detailed explanation of IEPDs and their contents. 125

Figure 1: The NIEM Reference Architecture 126
Error! Objects cannot be created from editing field codes. 127

There are generally four categories of XML schemas used to specify the instances of a particular NIEM 128
information exchange: 129

• the NIEM schemas (or a subset thereof), 130
• a constraint schema, 131
• an extension schema, and 132
• a document schema. 133

The latter three schemas are optional. The only mandatory schema is the NIEM base schema or a correct subset 134
of it (Subset schema derivation is defined in Section 9: Subset Schemas).The NIEM schemas may import code 135
table schemas (or subsets) as needed. An optional document schema imports, re-uses, and organizes the 136
components from the NIEM for the particular exchange. An optional extension schema may be used to add 137
extended types and properties for components not contained in the NIEM,. 138

The document and extension schemas can be combined into a single schema and namespace, or can be broken 139
out into separate schemas and corresponding namespaces. The user may decide the best way to organize 140

NIEM NDR Page 5 of 81
Draft Version 0.3
September 30, 2006

components. If the extension components will be reused elsewhere, it may be more efficient to maintain them in 141
a separate namespace, rather than including them in a document namespace. 142

The NIEM schemas are all inclusive and unconstrained. By creating a subset, the user can limit the components 143
to only those he needs. Subsets can be created from the NIEM base schema and code table schemas as well. 144
The basic principle for a subset is that an instance that validates against a correct subset schema will always 145
validate against the full NIEM schema set. The user may also adjust cardinality constraints as desired within the 146
subset schemas. Additional constraints can be handled in a constraint schema. A constraint schema may be 147
derived from the subset schema, however, it can contain other constraints (for example, xsd:choice). The 148
constraint schema provides a second constraint validation path that allows the user to reduce the possible set of 149
correct XML instances independently from the NIEM schema or subset conformance validation path. This is done 150
through multi-pass validation. A correctly constructed XML instance will validate through both the conformance 151
and the constraint path. 152

1.2. Scope 153

This document is a specification for the NIEM 1.0. It is not intended to specify beyond the NIEM 1.0 release. The 154
document addresses several issues: 155

• Definition of NIEM-conformant schemas 156
• Definition of NIEM-conformant reference schemas, on which schemas that are simply conformant are 157

based 158
• Definition of subsetting methodology, through which conformant schemas are built from conformant 159

reference schemas 160
• Naming of content to ensure understandability and reuse 161
• Documentation of content to ensure comprehension 162
• Definition of NIEM-conformant instances, which contain additional validation requirements, such as types 163

associated with references and relationships. 164

This document does not address the following: 165

• A formal definition of the data model. Such a definition would focus on RDF and concepts not strictly 166
required for interoperability. The document instead focuses on definition of schemas that work with the 167
data model, to ensure translatability and interoperability. 168

• Definition of versioning. The NIEM distribution has a versioning mechanism in place, consisting of 169
version numbers, with rules for what constitutes a "minor" or "major" change, and rules for inter-version 170
compatibility. Such rules are not strictly required for peer-level interoperability, and will be added at a later 171
stage. 172

• Definition of envelopes. This document does not define mechanisms related to the transport of NIEM-173
conformant data between two points. 174

This document is intended as a technical specification. It is not intended to be a tutorial. 175

1.3. Audience 176

The primary audience for this document is government practitioners and developers who employ XML for 177
information exchange and interoperability. Such information exchanges may be between organizations or within 178
organizations. The XML schemas rendered from the NIEM still offer schema designers much flexibility and 179
freedom to extend types and create new properties to satisfy requirements at the local level. However, these 180
rules are intended to establish and, more importantly, enforce a degree of standardization on a national level. 181

1.4. Document Conventions 182

1.4.1. Logical Quoting 183

This document uses "logical quoting", in which, when required, exact terms are placed within quotes, with 184
supporting punctuation placed outside the quotes. For example, when discussing a string with the value of "an 185
exact value", we do not quote it as "an exact value," or as "an exact value." For such cases, we would use "an 186

NIEM NDR Page 6 of 81
Draft Version 0.3
September 30, 2006

exact value", or "an exact value". In these cases, punctuation is placed outside the quotes, instead of within the 187
quotes, as it would be with traditional quoting. 188

1.4.2. RFC 2119 Terminology 189

Within normative content (rules and definitions), the key words MUST, MUST NOT, REQUIRED, SHALL, SHALL 190
NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL in this document are to be interpreted 191
as described in [RFC2119]. 192

1.4.3. References 193

This document relies on references to many outside documents. Such references are noted by bold, bracketed 194
inline terms. For example a reference to RFC 2119 is shown as [RFC2119]. All reference documents are 195
recorded in Appendix C: References. 196

1.4.4. XML Information Set Terminology 197

The following terms are used as defined by [XMLInfoSet]: 198

• Element parent 199
• Element child 200

Note that the "child" of an element is a direct, immediate child. Children of an element, and their children, 201
etc, will be referred to as "descendants" of that element. 202

• Document element 203

The term "document element" is preferred over "root element". 204

• Attribute owner element 205

An "owner element" is the element that possesses or contains the attribute. 206

• Attribute references 207
The "references" value of an attribute is the list of elements referred to by the IDREFS or IDREF value of 208
an attribute. 209

1.4.5. XML Schema Terminology 210

The terms “W3C XML Schema” and “XSD” are used throughout this document. They are considered 211
synonymous; both refer to XML Schemas that conform to Parts 1 and 2 of the W3C XML Schema Definition 212
Language (XSD) Recommendations ([XMLSchemaStructures] and [XMLSchemaDatatypes]). 213

The term "schema component" is defined by XSD. XML Schema contains specific definitions for various elements 214
acting as particular types of schema components, including "model group definition schema component" and 215
"Element declaration schema component". Such definitions are referred to, rather than restated. 216

1.4.6. Normative and Informative Content 217

The NIEM NDR includes a variety of content. Some text is normative (binding in implementations), while other 218
content is informative, including supporting text and specific rationale for rules. Some conventions used within the 219
document include: 220

[Definition: <term>] 221

A formal definition of a term. Definitions are normative. 222

[Principle <number>] 223

A guiding principle for the NIEM. The principles represent the requirements, concepts, and goals that 224
have helped shape the NIEM. Principles are informative, but act as the basis on which the rules are 225
defined. 226

NIEM NDR Page 7 of 81
Draft Version 0.3
September 30, 2006

[Rule <category><number>] 227

A binding rule. The rules are normative. They should state how they bind the users. Most rules apply to 228
conformant schemas (q.v.), while others apply to instances or reference schemas (q.v.). 229

The rules are categorized, to make indexing simpler. Categories for rules are as specified in Table 1: Rule 230
Categories. 231

Table 1: Rule Categories 232
Rule short name Meaning
ATD Attribute Definition Rules
ATN Attribute Naming Rules
CSR Constraint Schema Rules
CTD Complex Type Definition Rules
DOC Documentation Rules
GNR General Naming Rules: Broadly-applicable rules for

naming entities.
GXS General XML Schema Rules
IND Instance Document Rules
SSR Subset Schema Rules
STA Standards: The NIEM's relation to standards, standards

compliance, and interpretation of standards
STD Simple Type Definition Rules
STR Structures: The NIEM's use of specific structural

conventions to represent non-hierarchical data and object
order.

Rule identifiers that are deleted or recategorized will not be reused until a major release milestone is reached, at 233
which point all identifiers may be reset. 234

1.5. Syntax and Formatting 235

Courier: All words appearing in courier font are values, objects, and keywords. 236

Italics: All words appearing in italics, when not titles or used for emphasis, are special terms with definitions 237
appearing in this document. 238

Keywords: keywords reflect concepts or constructs expressed in the language of their source standard. Keywords 239
have been given an identifying prefix to reflect their source. The following prefixes are used: 240

• xsd: represents W3C XML Schema Definition Language. Use of the prefix "xsd" in schemas and 241
instances is not required. 242

• xsi: represents W3C XML Schema's XML Schema Instance namespace. Use of the prefix "xsi" in 243
schemas and instances is not required. 244

• structures: represents the NIEM structures namespace. Use of the prefix "structures" in schemas 245
and instances is not required. 246

• appinfo: represents the NIEM appinfo namespace. Use of the prefix "appinfo" in schemas is not 247
required. 248

[Defintion: structures namespace] 249

The structures namespace for NIEM is represented by the URI 250
"http://niem.gov/niem/structures/1.0". 251

 [Definition: appinfo namespace] 252

The appinfo namespace for NIEM is represented by the URI 253
"http://niem.gov/niem/appinfo/1.0". 254

Rules and supporting text may use Extended Backus-Naur Form (EBNF) notation as defined by [XML]. 255

NIEM NDR Page 8 of 81
Draft Version 0.3
September 30, 2006

See Appendix E: Glossary for additional term definitions. 256

NIEM NDR Page 9 of 81
Draft Version 0.3
September 30, 2006

2. Key Concepts and Terminology 257

[Definition: Appinfo Namespace] 258

[Definition: Structures Namespace] 259

[Definition: NIEM-conformant schema] 260

[Definition: NIEM-conformant reference schema] 261

[Definition: Documented Component] 262

[Definition: NIEM-conformant subset schemas] 263

[Definition: NIEM-compatible constraint schema] 264

[Definition: NIEM-conformant instance] 265

[Definition: NIEM Conformant Namespace] 266

[Definition: NIEM Compatible] 267

[Definition: Placeholder Schema] 268

[Definition: Documentation Schema] 269

[Definition: Extension Schema] 270

[Definition: Code Table] 271

[Definition: Reference Element] 272

[Definition: Fundamental Element] 273

 274

[Definition: NIEM-conformant schema] 275

The term NIEM-conformant schema SHALL be defined as an XML Schema that complies with the rules 276
for NIEM-conformant schemas as defined by this specification. 277

Rationale 278

This specification is primarily concerned with defining a particular type of schema that is designed to 279
match the numerous requirements and principles specified in Section 3: Guiding Principles. 280

[Definition: NIEM-conformant reference schema] 281

The term NIEM-conformant reference schema SHALL be defined as an XML Schema that complies with 282
the rules for NIEM-conformant reference schemas as defined by this specification. 283

Rationale 284

This specification separates reference schemas from non-reference schemas. Reference schemas are 285
the fully-documented forms of schemas that contain all available content, to the largest available 286
cardinality. 287

These reference schemas may act as the basis for subset schemas, which are not reference schemas, and which 288
may apply certain constraints, restrictions, and narrowing of scope to the reference schema. 289

Also included in this specification is the concept of constraint schemas. Constraint schemas act in tandem with 290
the reference schemas, and act to restrict content specified by the reference schemas. Constraint schemas need 291
not be NIEM-conformant, as the content on which they act must also validate against conformant schemas. Such 292
validation may be performed in stages, in agreement with the principle of multiple-pass validation. 293

[Definition NIEM-conformant instance] 294

A NIEM-conformant instance is a document or data set that satisfies the rules for NIEM-conformant 295
instances as specified in this document. 296

NIEM NDR Page 10 of 81
Draft Version 0.3
September 30, 2006

Rationale 297

3. XML data may be referred to as a NIEM-conformant 298

instance if it conforms to this specification299

NIEM NDR Page 11 of 81
Draft Version 0.3
September 30, 2006

3. Guiding Principles 300

Principles in this specification provide a foundation and explanations for the rules. The principles are not 301
operationally enforceable. The rules are the normative and enforceable manifestation of the principles. 302

3.1. Specification Principles 303

Principles regarding what to specify, and what this document covers. 304

3.1.1. Minimal Specification 305

This specification should state what is required for interoperability, not all that could be specified. Certain 306
decisions (such as normative XML comments) could create roadblocks for interoperability, making heavy 307
demands on systems for very little gain. The goal is not standardization for standardization’s sake. The goal is to 308
maximize interoperability and reuse. 309

[Principle 1] 310

This specification should specify what is necessary for interoperability, and no more. 311

3.1.2. Schema-Level Specification 312

This specification should try, as much as is possible, to specify schema-level content. This is a specification for 313
schemas, and so should specify schemas. It should avoid specifying complex data models, or data dictionaries. 314

[Principle 2] 315

This specification should focus on providing rules for specifying schemas. 316

3.1.3. Specificity and Conciseness 317

A rule should be as precise and specific as possible, to avoid broad, hard-to-modify rules. Putting multiple 318
clauses in a rule makes it harder to modify. Using separate rules allows specifics conditions to be clearly stated. 319

[Principle 3] 320

This specification should feature rules which are as specific, precise, and concise as possible. 321

3.2. Data Model Principles 322

The definition of the data model follows numerous guidelines. It is based upon actual data requirements gathered 323
from a large number of exchanges in the justice domain, as well as a need to regularize data definitions to make 324
them understandable and implementable. 325

[Principle 4] 326

NIEM schemas and data instances are constructed in such a way as to maintain consistency of its 327
fundamental data model. 328

3.2.1. RDF Data Model 329

The NIEM data model is defined with the RDF data model at its core. The rules specified in this document ensure 330
that NIEM-conformant XML instances preserve the Subject-Property-Object triplets defined by RDF. This support 331
will allow for leveraging of Semantic Web and other higher-level understanding of data. 332

[Principle 5] 333

The NIEM data model follows the Subject-Property-Object data model defined by RDF. 334

The RDF data model is defined by [RDFConcepts]. 335

NIEM NDR Page 12 of 81
Draft Version 0.3
September 30, 2006

3.2.2. Specialization of Types 336

The NIEM embraces the fundamental concept of specialization of types. Through specialization, general 337
concepts are made more precise for specific cases. Specialization of types involves the creation of new types by 338
extending or restricting existing types. 339

[Principle 6] 340

Types are specialized through the use of derived types 341

3.2.3. Specialization of Properties 342

The specialization of properties involves basing narrow concepts on general concepts. Properties are described 343
by [RDFConcepts] as characteristics or relationships. We represent them in XML as elements and attributes. 344

[Principle 7] 345

Properties are specialized through the use of derived properties 346

3.3. Principles in the use of XML 347

There are numerous methods and best practices for the use of XML. 348

3.3.1. Invariant Content 349

XML Schema has constructs that can make the data provided by XML processors different before and after 350
schema processing. A sample of this is the use of attributes with default values. Before processing, there may be 351
no attribute value, but after processing, the attribute value exists. 352

Within the NIEM, the process of validation of instances against schemas is solely validation: testing that data 353
instances match desired constraints and guidelines. It should not be used to change the content of data 354
instances. 355

[Principle 8] 356

The content of a data instance must not be modified by processing against schemas. 357

3.3.2. XML Schema for Validation 358

The NIEM is designed for W3C XML Schema validation. A primary goal is to maximize the amount of validation 359
that may be performed by XML Schema validating parsers. 360

[Principle 10] 361

The NIEM should depend on W3C XML Schema validating parsers for validation of XML content. 362

XSD validates content using content models: descriptions of what elements and attributes may be contained 363
within an element and what values are allowable. Mechanisms involving linking using attribute and element 364
values are useful, but should only be relied upon when absolutely necessary. 365

3.3.3. Minimal implementation requirements 366

The NIEM is intended to be an open specification, supported by many diverse implementations. It was designed 367
from data requirements and not from or for any particular system or implementation. Use of the NIEM should not 368
depend on specific software, other than XML Schema validating parsers. 369

[Principle 11] 370

The NIEM should not depend on specific software packages, frameworks, or systems for interpretation of 371
XML instances. 372

Similarly, the NIEM should be implementable with commercial off-the-shelf and free software products. 373

NIEM NDR Page 13 of 81
Draft Version 0.3
September 30, 2006

[Principle 12] 374

The NIEM should be implementable with a variety of commercial off-the-shelf and free software products. 375

3.3.4. Reference Schema Defines Namespace Contents 376

The NIEM uses the concept of a reference schema, which defines the structure and content of a namespace. For 377
each NIEM-conformant namespace, there is exactly one reference schema. A user may use a subset schema 378
(q.v.) for a reference schema, but all instances must validate against a single reference schema for each 379
namespace. 380

[Principle 13] 381

Each NIEM-conformant namespace will be defined by exactly one reference schema. 382

3.3.5. Reuse of Namespaces 383

The NIEM is designed to maximize reuse of namespaces and the schemas that define them. When referring to a 384
concept defined by the NIEM, users should ensure that instances and schemas refer to the namespace defined 385
by the NIEM. User-defined namespaces should be used for specializations and extension of NIEM constructs, 386
but should not be used when the NIEM structures are sufficient. 387

[Principle 14] 388

NIEM-conformant instances and schemas should reuse the NIEM namespaces when possible. 389

Reuse is by reference to the namespace, with validation against reference schemas or reference subset 390
schemas. 391

3.3.6. Specific Typing 392

As soon as an application has determined the name and namespace of an attribute or element used in NIEM-393
conformant instances, it will also know the type of that attribute or element. NIEM does not employ anonymous 394
typing. 395

[Principle 15] 396

Each attribute and element within the NIEM has a defined type. 397

3.3.7. Avoidance of Wildcards 398

Wildcards in schemas work in opposition to standardization. The effort of creating harmonized, standard 399
schemas is to standardize a set of data. Wildcards allow non-standard data to be passed in otherwise standard 400
messages. As such, users may receive non-standard data, and users may not be encouraged to extend in such a 401
way that extensions may be distinguished from standardized content. 402

[Principle 16] 403

Wildcards in standard schemas should be avoided 404

3.3.8. Schema Location as a Hint 405

[XMLSchemaStructures] specifies schemaLocation, an attribute of the xsd:import element of a schema, 406
the xsi:schemaLocation, and xsi:noNamespaceSchemaLocation attributes of XML instances. In both of 407
these uses, the specification explicitly maintains that the schema location specified is a hint, which may be 408
overridden by applications. For example, from [XMLSchemaStructures]: 409

The actual value of the schemaLocation, if present, gives a hint as to where a serialization of a schema 410
document with declarations and definitions for that namespace (or none) may be found. 411

NIEM NDR Page 14 of 81
Draft Version 0.3
September 30, 2006

[Principle 17] 412

Schema locations specified within NIEM-conformant reference schemas are hints, to provide default 413
values to processing applications. 414

3.3.9. Multi-pass Validation 415

Systems that operate on XML data have the opportunity to perform multiple layers of processing. Data may be 416
processed by middleware, XML libraries, XML Schemas, and application software. 417

[Principle 18] 418

The primary purpose of XML Schema validation is to restrict processed data to that data that conforms to 419
agreed-upon rules. This restriction is achieved by marking as invalid that data that does not conform to 420
the rules defined by the schema. 421

The NIEM does not attempt to create a one-size-fits-all schema, to perform all validation. Instead, it creates a set 422
of reference schemas, on which additional constraints may be placed. It also does not focus on language-binding 423
XML Schema implementations, which convert XSD definitions into working programs. It is, instead, focused on 424
normalizing language and preserving the meaning of data. 425

[Principle 19] 426

Constraints on XML instances MAY be validated by multiple schema validation passes, using multiple 427
schemas for a single namespace. 428

3.3.10. No Mixed Content 429

When validating XML instance data against W3C XML Schemas, mixed content is very difficult to constrain. 430
Instances that use mixed content are difficult to specify, and complicate the task of data processing. Much of the 431
payload carried by mixed content is unchecked, and does not facilitate data standardization or validation. 432

[Principle 20] 433

NIEM-conformant schemas do not specify data that uses mixed content. 434

3.3.11. Application versus User Information 435

[Principle 21] 436

XML data is primarily intended for automatic processing, not for human consumption. 437

XML should be made human-understandable whenever possible, but it is not targeted at human consumers. XML 438
Schema is intended for validators and automatic processing. HTML is intended for browsers. Browsers and 439
similar technology provide human interfaces to XML and other structured content. As such, structured XML 440
content does not belong in places targeted towards human consumption. Human-targeted information should be 441
of a form suitable for presentation. 442

3.3.12. Design for Extensibility 443

The NIEM is designed to be extended. Numerous methods are considered acceptable in creating extended and 444
specialized components. 445

[Principle 22] 446

The NIEM is intended for extension and augmentation by users and developers outside the 447
standardization process. 448

NIEM NDR Page 15 of 81
Draft Version 0.3
September 30, 2006

4. Relation to Standards 449

The NIEM uses many public standards, and is influenced by many others. This section specifies to what 450
specifications the NIEM conforms, and the specific rationale for differences from public standards. 451

4.1. XML 1.0 452

Artifacts of NIEM conform to the most recent recommendation for XML. 453

[Rule STA1] 454

NIEM-conformant schemas MUST conform to XML as specified by [XML]. 455

4.1.1. XML Comments 456

XML Comments are not schema constructs and are not specifically associated with any schema-based 457
components. As such, comments are not considered semantically meaningful by NIEM, and may not be retained 458
through processing of NIEM schemas. 459

[Rule STR18] 460

XML comments shall not be used for meaningful information about constructs within XML Schemas. 461

Rationale 462

Since XML comments are not associated with any specific XML Schema construct, there is no standard 463
way to interpret comments. As such, comments should be reserved for internal use, and XML Schema 464
annotations should be preferred for meaningful information about components. 465

4.2. XML Namespaces 466

[Rule STA2] 467

NIEM-conformant schemas MUST conform to the specification for namespaces in XML, as defined by 468
[XMLNamespaces] and [XMLNamespacesErrata]. 469

4.3. XML Schema 470

The W3C XML Schema definition language has become the generally accepted schema language that is 471
experiencing the most widespread adoption. Although other schema languages exist that offer their own 472
advantages and disadvantages, the best approach is to base NIEM on W3C XML Schema. 473

[Rule STA3] 474

All NIEM-conformant schemas MUST be based on the W3C XML Schema Recommendations: XML 475
Schema Part 1: Structures and XML Schema Part 2: Datatypes, as specified by 476
[XMLSchemaStructures] and [XMLSchemaDatatypes]. 477

Rationale 478

This document is to be the specification for schemas and instances, not a specification for the 479
specification itself. Those go in principles. 480

4.4. ISO 11179 481

4.4.1. ISO 11179, Part 4 482

4.4.1.1. Formulation of data definitions 483

The ISO 11179, Part 4, standard provides structure and rules for defining data definitions. The NIEM uses this 484
standard with respect to summary definitions. 485

NIEM NDR Page 16 of 81
Draft Version 0.3
September 30, 2006

[Rule STA5] 486

Within a NIEM-conformant schema, each XML element, attribute, and type definition SHALL follow the 487
rules and recommendations of formulating data definitions given by ISO 11179, Part 4. 488

Rationale 489

To advance the goal of creating semantically-rich NIEM conformant schemas, it is necessary that data 490
definitions be descriptive and meaningful. 491

Note that NIEM definitions may contain extensive details about an XML element, attribute, or type, including such 492
things as a rationale, examples, and domain-specific usages. 493

4.4.2. ISO 11179, Part 5 494

The ISO 11179, Part 5, standard provides a structure and rules for naming data elements. The NIEM uses this 495
standard, with some specific refinements. 496

4.4.2.1. Object Class 497

In the NIEM, the object class that constitutes the first part of an entity name is interpreted as a real-world object 498
class. That is, the object class term should reflect the real-world object classes and not specific data classes. It 499
represents a real-world object rather than simply a collection of data. 500

4.4.2.2. Representation Terms 501

ISO 11179 part 5 requires the use of representation terms for data classes. The NIEM uses a specific set of 502
representation terms. 503

[Rule GNR1] 504

Each XML element, attribute, and type defined by NIEM-conformant schemas SHALL use a 505
representation term from Table 2: Representation Terms unless the XML elements are of types with 506
complex content. 507

Rationale 508

A representation term defines the kind of value that is to be expected from the element. It is not needed 509
for elements that are of types with complex content because they are comprised of other elements. 510
There is no single kind of value to be expected within an element of complex content. 511

4.4.2.2.1. Types 512

[Rule GNR2] 513

NIEM-conformant schemas SHALL use the representation term "Type" in the name of each non-514
enumerated XML Schema type. 515

Rationale 516

Using the representation term "Type" immediately identifies XML types in a NIEM-conformant schema 517
and prevents naming collisions with corresponding XML elements and attributes. 518

4.4.2.2.2. Simple Types 519

[Rule GNR10] 520

The representation term "SimpleType" shall be used in the name of each XML Schema simple type. 521

Rationale 522

Schemas are more comprehensible when referenced structures may be easily identified. Specific uses of 523
simple types and complex types have similar syntax, but very different effects on data definitions. 524

NIEM NDR Page 17 of 81
Draft Version 0.3
September 30, 2006

Schemas that clearly identify complex types and simple types are easier to understand without tool 525
support. 526

4.4.2.2.3. Code Types 527

[Rule GNR3] 528

NIEM-conformant schemas SHALL use the representation term “CodeType” in the name of each XML 529
Schema type which: 530

1. is a complex type 531

2. has simple content, where 532

3. its simple content is an enumerated XML Schema type. 533

Rationale 534

Using the representation term "CodeType" immediately identifies XML Schema types in a NIEM-535
conformant schema that define code sets and prevents naming collisions with corresponding XML 536
elements and attributes. 537

Table 2: Representation Terms 538
Representation Term Definition

Amount A number of monetary units specified in a
currency where the unit of currency is
explicit or implied.

BinaryObject A set of finite-length sequences of binary
octets.

Graphic A diagram, graph, mathematical curves, or
similar representation

Picture A visual representation of a person, object,
or scene

Sound A representation for audio

Video A motion picture representation; may
include audio encoded within

Code A character string (letters, figures or
symbols) that for brevity, language
independence, or precision, represents a
definitive value of an attribute.

CodeText A character string for which data values
are codes but are not validated by the
schema because there is no
corresponding enumerated type present.

DateTime1 A particular point in the progression of time
together with relevant supplementary
information.

Date A particular day, month, and year in the
Gregorian calendar.

Time A particular point in the progression of time
within an unspecified 24 hour day.

1 DateTime is not actually used in the NIEM reference distribution schema, but is available for use.

NIEM NDR Page 18 of 81
Draft Version 0.3
September 30, 2006

Representation Term Definition

DescriptionText A character string that is a description of a
value, not the actual value itself.

Identifier2 A character string to identify and
distinguish uniquely, one instance of an
object in an identification scheme from all
other objects in the same scheme together
with relevant supplementary information.

Indicator A list of two mutually exclusive Boolean
values that express the only possible
states of a Property.

Measure A numeric value determined by measuring
an object along with the specified unit of
measure.

Numeric Numeric information that is assigned or is
determined by calculation, counting, or
sequencing. It does not require a unit of
quantity or unit of measure.

Value A result of a calculation

Rate A representation of a ratio where the two
units are not included.

Percent A representation of a ratio in which the two
units are the same.

Quantity A counted number of non-monetary units
possibly including fractions.

Text A character string (i.e. a finite sequence of
characters) generally in the form of words
of a language.

Name A word or phrase that constitutes the
distinctive designation of a person, place,
thing or concept.

Type The expression of the aggregation of
properties to indicate the aggregation of
lower leveled information entities. All Type
names use this Representation Term

2 "ID" (the abbreviation) is preferred over the full term "Identifier". It is indicated in the table of abbreviations.

NIEM NDR Page 19 of 81
Draft Version 0.3
September 30, 2006

5. Naming Rules 539

5.1. Usage of English 540

The English language has many spelling variations for the same word. For example, American English “program” 541
has a corresponding British spelling “programme.” This variation has the potential to cause interoperability 542
problems when exchanging XML components because of the different names used by the same elements. 543
Providing a dictionary standard for spelling will mitigate this potential interoperability issue. 544

[Rule GNR4] 545

NIEM information exchange XML elements, attributes and type names MUST be composed of words from 546
the English language, using the prevalent U.S. spelling, as provided by the Oxford English Dictionary, 547
Second Edition, 1989. 548

5.2. Characters in Names 549

[Rule GNR5] 550

NIEM information exchange XML element, attribute and type names SHALL use only the characters from 551
, in accordance with the use specified in that table. 552

Names of entities within the NIEM follow the rules of W3C XML Schema, by rule [Rule STA3]. Entities also must 553
follow the rules specified for each type of XML Schema entity. 554

Table 3: Characters Allowed in Names 555
Character Title Character Literal Use
Letters The first character of a name

SHALL be a letter.
Uppercase letters 'A'-'Z' The first character of the

name of a type or an element
SHALL be an uppercase letter

Lowercase letters 'a'-'z' The first character of the
name of an attribute SHALL
be a lowercase letter

Digits '0'-'9' Digits SHALL NOT be used to
enumerate. They may be
used to specify a specific
concept or standard.

Underscore '_' Underscores SHALL NOT be
used in NIEM entity names

Hyphen '-' Hyphens may be used in the
Representation Qualification
Suffix portion of an element
name

Period '.' Periods may be used to
separate a property name
from its Representation
Qualification Suffix.

5.3. Use of Acronyms and Abbreviations 556

Acronyms and abbreviations can obscure meaning, and impair understanding and interoperability. They should 557
be used with great care. Acronyms and abbreviations that are used must be documented, and used consistently. 558

NIEM NDR Page 20 of 81
Draft Version 0.3
September 30, 2006

[Rule GNR6] 559

A NIEM-conformant schema MUST consistently use approved acronyms, abbreviations, and word 560
truncations within defined names. The approved shortened forms are defined in Appendix B: Normative 561
Abbreviations. 562

Other acronyms and abbreviations will be used on a per-schema basis. Such abbreviations must be properly 563
documented within the schema documentation. 564

[Rule DOC1] 565

[NIEM 3.1 CHANGE] A NIEM-conformant schema MUST specify ALL acronyms, abbreviations, and 566
other word truncations within NIEM-conformant schema notation. 567

5.4. Singular and Plural Forms 568

 [Rule GNR7] 569

Within NIEM-conformant schemas, element, attribute and type names MUST be in singular form unless 570
the concept itself is plural. 571

The following is an example of correct name use: 572

PersonPhysicalFeature, PhysicalFeatureType 573
PersonPhysicalDetails, PersonPhysicalDetailsType 574
personNameInitialIndicator 575

5.5. Character Case 576

 [Rule GNR8] 577

The upper camel case convention SHALL be used for naming elements and types. 578

Rationale 579

The use of upper camel case for names of types has become a defacto standard, to which NIEM 580
conforms. 581

Examples of upper camel case names: 582

PersonName 583
JewelryStone 584

[Rule GNR9] 585

The names of attributes defined within NIEM-conformant schemas SHALL be formatted in lower camel 586
case. 587

Examples of lower camel case names: 588

amountCurrencyCodeListVersionID 589
characterSetCode 590

NIEM NDR Page 21 of 81
Draft Version 0.3
September 30, 2006

6. Normalized Structure Design Rules 591

The NIEM enforces a regular structure on XML instances. NIEM provides a specific schema which contains base 592
types for types in NIEM-conformant schemas. It provides base elements to act as heads for substitution groups. 593
It also provides attributes that provide facilities not otherwise provided by XML Schema. 594

6.1. Structures Namespace 595

The NIEM provides a namespace containing structures for organizing data. These structures should be used to 596
augment XML data. The structures provided are not meant to replace fundamental XML organization methods; 597
they are intended to assist them. 598

[Rule STR2] 599

The NIEM structures namespace shall be represented by the URI 600
"http://niem.gov/niem/structures/1.0". 601

Rationale 602

The structures namespace is a single namespace, separate from namespaces that define NIEM-603
conformant data. This document refers to this content via the prefix structures. 604

[Rule STR3] 605

NIEM-conformant schemas and instances SHALL NOT use content within the NIEM structures 606
namespace except as specified by this document. 607

Rationale 608

It is an error to insert into the NIEM structures namespace types, elements, attributes, etc., that are not 609
specified by this document. 610

6.1.1. Sequence ID 611

The attribute structures:sequenceID is provided to allow specification of sequential order of instances, when 612
a complex type's defined element sequence is insufficient. A limitiation of XML Schema is that control of 613
cardinality (the number of times an element may occur in an instance) requires the use of sequences of elements. 614
This use of xsd:sequence defines the elements occurring within a type in a specific order. This order may not 615
match the desired sequential order of the represented entities. 616

 An example would be for proper names, where the natural order of the names may not appear in the same order 617
as the sequence defined by a complex type. For example, some naming patterns have the family name as the 618
last name of a person, while others have family name first, and others in the middle. Without a method for 619
concretely define the desired sequence of the parts of a name, such data will be misrepresented in an XML 620
instance. 621

The sequenceID attribute allows instances to express the sequential order of data relative to a parent. The 622
order of data is as yielded by XSLT's sort element, with data-type of "number", and order of "ascending". Content 623
with identical sequenceID values has undefined order. 624

[Rule STR4] 625

The order of elements that are children of a NIEM-conformant element shall be presented as if their 626
sequential order is as follows: 627

1. First, elements owning an attribute structures:sequenceID, in the order that would be yielded 628
with their sequence IDs sorted via XSLT's sort element, with a data type of "number" and an order of 629
"ascending". 630

2. Following those elements, the remaining elements, in the order in which they occur within the XML 631
instance. 632

NIEM NDR Page 22 of 81
Draft Version 0.3
September 30, 2006

Rationale 633

Because of NIEM's use of structured, defined types, and its use of sequence, as well as various 634
representation mechanisms, the order of data within an XML instance may require more precise 635
definition. The true order of objects (such as parts of a name, or lines in an address, or parts of a phone 636
number) may need an explicit method to define their order. 637

In this definition, the term "presented" may mean presentation to the user, reports, or transfer to other 638
data systems. 639

[Rule STR6] 640

Within NIEM-conformant schemas and instances, the attribute structures:sequenceID SHALL NOT 641
be interpreted as meaningful beyond an indicator of sequential order of an object relative to its siblings. 642

Rationale 643

Siblings of a data item are items that have the same parent. Note that, using the reference and 644
relationships mechanisms, data objects may have multiple parents. The sequenceID is truly metadata, 645
helping to express the structure of the data, rather than its content. 646

Note that reference elements have the same semantics as concrete data elements, and so follow the same rules 647
for sequential order. By using reference elements, an entity may have one order within one structure, and 648
another order within another structure. 649

Within NIEM-conformant schemas, the order of objects SHALL be given by sorting the objects by numerical value 650
of their respective attribute structures:sequenceID, from smallest to highest. The relative order of objects 651
with equal values for structures:sequenceID is their order within the XML instance. The order of objects with 652
no value for structures:sequenceID is after all objects that have values for structures:sequenceID, in 653
their relative order within the XML instance.is undefined. 654

6.1.2. References 655

In XML instances, the primary method of expressing relationships between data objects is by: 656

1. expressing the data objects as XML elements, and 657

2. having one element contain other elements 658

In this way, there is generally some implicit relationship between the outer element (the "containing" element, 659
a.k.a. the parent element) and the inner elements (the "contained" elements, a.k.a. the child elements). Such 660
expression of relationships is said to be by containment. 661

Expression of all relationships via element containment is not always possible. Situations that cause problems 662
include: 663

• Circular relationships 664

For example, if we say "Object1 has a relationship to Object2" and "Object2 has a relationship to 665
Object1". Expressed via containment, this would result in infinite recursive descent. 666

• Repeated relationships 667

For example, if we say "Object1 has a relationship to Object2" and "Object3 has a relationship to 668
Object2". Expressed via containment, this would result in a duplicate of Object2. 669

A method that solves this problem is to use references. In a C or assembler, a pointer would be used. In C++, a 670
reference might be used. In java, a reference value might be used. The method defined by the XML standard is 671
the use of ID and IDREF. An ID refers to an IDREF. This is the method used by NIEM. 672

 [Rule STR8] 673

Within a NIEM-conformant schema, a reference element is an element defined with a name of the form 674

NCName "Reference" 675

NIEM NDR Page 23 of 81
Draft Version 0.3
September 30, 2006

Where NCName is as defined by [XMLNamespaces]. 676

Rationale 677

Reference elements allow XML data to break free of the hierarchical data model, allowing reuse of data 678
objects. 679

[Rule STR9] 680

Within a NIEM-conformant schema, a reference element SHALL be defined to be of type 681
structures:ReferenceType. Any element of this type must be a reference element. 682

Rationale 683

Reference elements must be of the reference type, and elements of the reference type must be reference 684
elements. 685

[Rule STR10] 686

Within a NIEM-conformant schema, element of the form 687

NCName1 688

and of the form 689

NCName1 "Reference" 690

(where the value of NCName1 is the same between the two forms) shall be defined to have identical 691
semantics. The NIEM recognizes no difference in meaning between a reference element and an element 692
that is not a reference element. 693

 Rationale 694

NIEM-conformant data instances may use concrete data elements and reference elements as needed, to 695
represent the meaning of the fundamental data. There is no implied difference in meaning between 696
reference or concrete data representations. The two different methods are available for ease of 697
representation. No change in meaning should be implied by the use of one method or the other. 698

Some parties assert that "included" data is intrinsic, while referenced elements are intrinsic. As applied to 699
NIEM-conformant data, such assertions are in error. 700

 [Rule STR13] 701

Within NIEM-conformant schemas, an element defined with a name not of the form defined in [Rule 702
STR8] SHALL NOT be of type structures:ReferenceType. 703

Rationale 704

If an element is not named to be a reference element, then it may not be of reference type. Only 705
reference elements may be of reference type. 706

The NIEM schemas define structures:ReferenceType to require the use of an attribute 707
structures:reference, which is of type IDREF as specified by [XML]. According to the rules of XML, such 708
an attribute must contain a value that is represented by an attribute of type ID. In NIEM-conformant instance, the 709
targets of IDREFs are expected to be values of the attribute structures:id. 710

The NIEM schemas define structures:ReferenceType such that it is unavailable as a base for extension or 711
restriction. 712

The NIEM schemas define structures:ReferenceType such that it has an optional attribute 713
structures:id. This may be used to describe additional metadata or information about the relationship 714
described by an element of type structures:ReferenceType. 715

 [Rule STR16] 716

Within a NIEM-conformant instance, an element of type structures:ReferenceType MAY contain an 717
occurrence of attribute xml:id. 718

NIEM NDR Page 24 of 81
Draft Version 0.3
September 30, 2006

Within a NIEM-conformant instance, the element referred to by an attribute structures:reference MUST be 719
of a type valid for the object of the fundamental element of the reference element. This property is described by 720
rules in the relevant sections. 721
 722

NIEM NDR Page 25 of 81
Draft Version 0.3
September 30, 2006

7. General Schema Design Rules 724

The W3C XML Schema language provides many redundant features that allow a developer to represent a logical 725
data model many different ways. Heterogeneous data models can become an interoperability problem in the 726
absence of a comprehensive set of naming, definition, and declaration design rules. 727

This section establishes rules for XML schema elements, attributes, and type creation. Because the W3C XML 728
specifications are flexible, comprehensive rules are needed to achieve a balance between establishing uniform 729
schema design while still providing developers flexibility across the Justice and Public Safety domain. 730

7.1. Mixed Content 732

[Rule CTD1] 733

The value of the attribute mixed within an element xsd:complexType or xsd:complexContent shall 734
not have the value "true". 735

Rationale 736

A NIEM-conformant schema does not define mixed content. NIEM does not support mixed content in 737
XML elements. Exchange documents containing mixed content are difficult to process, define, and 738
constrain. 739

External schemas may include mixed content, and may be used with NIEM via external adapter typs and external 740
container elements. 741

7.2. Notations 742

Notations are not supported by the NIEM. Notations allow the attachment of system and public identifiers on 743
fields of data. 744

[Rule GXS3] 745

NIEM-conformant schemas SHALL NOT contain an occurrence of the element xsd:notation. 746

Rationale 747

The notation mechanism is not supported by NIEM. The xsd:notation element defines a notation on a 748
field of data. 749

[Rule GXS4] 750

NIEM-conformant schemas SHALL NOT contain a reference to the type xsd:notation, or to a type 751
derived from that type. 752

Rationale 753

The notation mechanism is not supported by NIEM. The xsd:notation type defines a field to which system 754
and public identifiers may be applied. 755

7.3. Schema Document Element 756

The features of W3C XML Schema allow for flexibility of use for many different and varied types of 757
implementation. The NIEM NDR requires consistent use of these features. The document element of a schema is 758
xsd:schema. 759

[Rule GXS18] 760

In a NIEM-conformant schema, any occurrence of the element xsd:schema MUST own an attribute 761
targetNamespace. The value of the attribute MUST match the production <absolute-URI> as 762
defined by [RFC3986]. 763

NIEM NDR Page 26 of 81
Draft Version 0.3
September 30, 2006

Rationale 764

Schemas without defined namespaces provide definitions that are ambiguous, in that they are not 765
universally identifiable. 766

Absolute URIs are the only universally meaningful URIs. Finding the target namespace using XML Base 767
is overly complicated, and not specified by XSD. Relative URIs aren't universally identifiable, as they are 768
context-specific. 769

The xsd:schema element contains an optional attribute attributeFormDefault. The value of this attribute is 770
immaterial to a NIEM-conformant schema, as each attribute defined by a NIEM-conformant schema must be 771
defined at the top-level, and so must be qualified with the target namespace of its declaration. 772

The xsd:schema element contains an optional attribute elementFormDefault. The value of this attribute is 773
immaterial to a NIEM-conformant schema, as each element defined by a NIEM-conformant schema must be 774
defined at the top-level, and so must be qualified with the target namespace of its declaration. 775

 [Rule GXS21] 776

In a NIEM-conformant schema, the element xsd:schema must own an attribute version, which must 777
have a non-empty value. 778

Rationale 779

It is very useful to be able to tell one version of a schema from another. Apart from the use of 780
namespaces for versioning, it is sometimes necessary to release multiple versions of schema documents. 781
Such use might include: 782

• Subset schemas 783
• Error corrections or bug-fixes 784
• Documentation changes 785
• Contact information updates 786

In such cases, a different value for the version attribute implies a different version of the schema. No 787
specific meaning is assigned to specific version identifiers. 788

7.4. Top-Level Constructs 789

Top-level constructs of a schema are those definitions which occur just below the xsd:schema element. This 790
section considers such constructs that do not merit their own section. 791

7.4.1. Element xsd:include 792

Element xsd:include brings schemas defined in separate files into the current namespace. Its use can create 793
difficulties with schema reuse, and increases the likelihood of conflicting definitions. 794

[Rule GXS9] 795

A NIEM-conformant schema MUST NOT contain the element xsd:include. 796

Rationale 797

Inclusion of namespaced schemas violates the principle that a single reference schema defines a 798
namespace. It breaks a namespace up into arbitrary partial schemas, which needlessly complicates the 799
schema structure. Inclusion of unnamespaced schemas complicates schema understanding as well, 800
making it difficult to find the realization of a specific schema artifact. 801

7.4.2. Element xsd:redefine 802

The xsd:redefine element allows a schema to restrict and extend components from a namespace in that 803
namespace. As described by [XMLSCHEMA-1]: 804

NIEM NDR Page 27 of 81
Draft Version 0.3
September 30, 2006

The definitions within the <redefine> element itself are restricted to be redefinitions of components from 805
the <redefine>d schema document, in terms of themselves. That is, 806

• Type definitions must use themselves as their base type definition; 807
• Attribute group definitions and model group definitions must be supersets or subsets of their original 808

definitions, either by including exactly one reference to themselves or by containing only (possibly 809
restricted) components which appear in a corresponding way in their <redefine>d selves. 810

Such redefinition introduces duplication of definitions, as multiple definitions exist for components from a single 811
namespace. 812

[Rule GXS10] 813

A NIEM-conformant schema MUST NOT contain the element xsd:redefine. 814

Rationale 815

Use of redefine provides an alternative definition for the contents of a namespace, in violation of the 816
principle that a single reference schema defines a NIEM-conformant namespace. 817

7.5. Import of Namespaces 818

Namespaces used by a NIEM-conformant schema must be imported using the xsd:import element, in 819
compliance with the XML Schema specification. Importing of namespaces is performed via the xsd:import 820
element, which appears as an immediate child of the xsd:schema element. 821

[Rule GXS11] 822

Within a NIEM-conformant schema, any occurrence of the element xsd:import MUST own the attribute 823
namespace. The value of the attribute MUST match the production <absolute-URI> as defined by 824
[RFC3986]. 825

Rationale 826

An import that does not specify a namespace is enabling reference to non-namespaced components. 827
NIEM requires that all components have a defined namespace. It is important that the namespace 828
declared by a schema be universally defined, and unambiguous. XML Base processing is not specified 829
by XML Schema, and so is not supported here. 830

[Rule GXS13] 831

Within a NIEM-conformant schema, any occurrence of the element xsd:import which imports a NIEM-832
conformant schema MUST own the attribute schemaLocation. 833

Rationale 834

An import that does not specify a schema location gives no clue to processing applications as to where to 835
find an implementation of the namespace. Even though such a provided schema location may be 836
overridden, it is important that an initial default be provided for processing. 837

[Rule GXS14] 838

In a NIEM-conformant schema, the value of any occurrence of the attribute schemaLocation owned by 839
an element xsd:import MUST match either the production <absolute-URI>, or the definition of 840
"relative-path reference", as defined by [RFC3986]. 841

Rationale 842

Default schemas must be provided for processing. These may specified either as absolute or relative 843
URIs. Since URNs are not resolvable, they are inappropriate for use in schemaLocation. The 844
requirement for conformance to "relative-path reference" is required to avoid the more obscure syntax of 845
"network-path reference" and the system-specific "absolute-path reference". 846

NIEM NDR Page 28 of 81
Draft Version 0.3
September 30, 2006

[Rule GXS15] 847

In a NIEM-conformant schema, the value of any occurrence of the attribute schemaLocation owned by 848
an element xsd:import MUST be resolvable to a XML schema document file that is valid according to 849
[XMLSchemaStructures] and [XMLSchemaDatatypes] 850

Rationale 851

The object imported via xsd:import must be a schema document. The XSD spec requires that the "author 852
warrants" that this is the case. This rule ensures that this is actually the case. 853

7.5.1. Importing Non-conformant Namespaces 854

Rules for schema locations are made more complicated by issues related to the importing of non-conformant 855
namespaces. These issues include: 856

• NIEM may not redistribute the copyrighted work of others without permission 857
• Many non-conformant namespaces have no authoritative schema 858
• Many non-conformant namespaces have multiple schemas, representing different versions under the 859

same namespace 860
• Non-conformant namespaces disagree as to what version of other namespaces they require 861

As a result of these issues, imports of non-conformant namespaces are not required to contain a 862
schemaLocation attribute. To make this testable, imports of non-conformant namespaces are required to 863
contain an appinfo element indicating that the namespace is not conformant. 864

[Rule GXS20] 865

Any element xsd:import that does not import a NIEM-conformant namespace MUST contain an 866
xsd:appinfo annotation of the following form: 867

<appinfo:ConformantIndicator>false</appinfo:ConformantIndicator> 868

Rationale 869

This rule enables schema processors to determine if a namespace is conformant or not. If an import 870
claims that a namespace is conformant, it may be easily verified. If the import indicates that the 871
namespace is not conformant, the rules for non-conformant namespaces hold. It is an error to indicate 872
that a NIEM-conformant namespace is non-conformant. 873

[Rule GXS16] 874

Within a NIEM-conformant reference schema, any occurrence of the element xsd:import that imports a 875
non-conformant schema MUST have as an immediate child an occurrence of the element 876
xsd:annotation which has an immediate child element xsd:documentation. 877

Rationale 878

Reference schemas must be properly documented. Conformant schemas are guaranteed to contain 879
proper documentation and so need no additional documentation. Non-conformant schemas must be 880
documented at the point of import, because such schemas do not follow NIEM documentation rules. 881

7.6. General Type Definitions 882

Since NIEM document and extension schema elements and types are intended to be reusable, all types must be 883
named. This permits other types to establish elements that reference these types, and also supports the use of 884
extensions for the purposes of versioning and customization. 885

The requirement that types be named is established by [Rule STD1 and [Rule CTD2]. 886

NIEM NDR Page 29 of 81
Draft Version 0.3
September 30, 2006

NIEM-conformant schemas may not use xsd:anyType, because this feature permits the introduction of potentially 887
unknown types into an XML instance. NIEM intends that all constructs within the instance be described by the 888
schemas describing that instance – xsd:anyType tends to work counter to the requirements of interoperability. In 889
consequence, particular attention is given to the need to enable meaningful validation of the NIEM document 890
instances. 891

[Rule GXS17] 892

NIEM-conformant schemas SHALL NOT reference the type xsd:anyType. 893

Rationale 894

The type xsd:anyType provides a substantial wildcard by which untyped and unconstrained data may 895
be carried. This violates several NIEM principles. 896

7.7. Simple Type Definitions 897

[Rule STD1] 898

Within a NIEM-conformant schema, any occurrence of the element xsd:simpleType MUST appear as 899
an immediate child of the element xsd:schema. 900

Rationale 901

NIEM does not support anonymous / unnamed types in conformant schemas. All "top-level" types are 902
required by XSD to be named, and are therefore globally reusable. 903

[Rule STD2] 904

Within NIEM-conformant schemas, any occurrence of the element xsd:simpleType MUST have an 905
occurrence of the element xsd:restriction as an immediate child. 906

Rationale 907

Any simple type must be a restriction of another type. One alternative is "list", in which the resulting type 908
is a list of entries, which should be structured via explicit XML, and not composed fields. The other 909
alternative is "union", which combines different-typed entries into a single type, obscuring meaning of 910
instance values. 911

[Rule STD3] 912

Within a NIEM-conformant reference schema, any occurrence of the element xsd:simpleType MUST 913
have an occurrence of the element xsd:annotation as an immediate child. 914

Rationale 915

Reference schemas must be properly documented. 916

 [Rule STD4] 917

Within a NIEM-conformant schema, any occurrence of the element xsd:restriction that is an 918
immediate child of an element xsd:simpleType MUST contain an attribute base. 919

Rationale 920

All restrictions must restrict named types. NIEM does not support anonymous types. 921

Taking into account the other rules, this rule may be derivable, however, it is useful to have the point 922
stand on its own. 923

[Rule STD5] 924

Within a NIEM-conformant schema, the value of the attribute base owned by an element 925
xsd:restriction acting as part of a simple type declaration schema component MUST have a value 926
that refers to a simple type defined by the XML Schema specification, or a simple type defined by a 927
NIEM-conformant schema. 928

NIEM NDR Page 30 of 81
Draft Version 0.3
September 30, 2006

The content of the simple type definition then may add facets to the base simple type, in line with XSD 929
specifications. 930

[Rule STD6] 931

Within a NIEM-conformant schema, the value of the attribute base owned by an element 932
xsd:restriction acting as part of a simple type declaration schema component MUST NOT have a 933
value that refers to xsd:anySimpleType 934

Rationale 935

xsd:anySimpleType is insufficiently constrained to provide a meaningful starting point for content 936
definitions. 937

7.8. Complex Type Definitions 938

[Rule CTD2] 939

Within NIEM-conformant schemas, any occurrence of the element xsd:complexType MUST appear as 940
a child of the element xsd:schema. 941

Rationale 942

NIEM does not support anonymous / unnamed types in conformant schemas. All "top-level" types are 943
required by XSD to be named, and are therefore globally reusable. 944

[Rule CTD3] 945

Within NIEM-conformant schemas, an occurrence of the element xsd:complexType MUST NOT 946
include the attribute mixed with a value of "true" or "1". 947

Rationale 948

NIEM does not support mixed content. 949

NIEM supports use of attributes and attribute groups. 950

7.8.1. Complex Content 951

Within xsd:complexType, NIEM supports use of abstract, block, and final. NIEM supports use of simple 952
content, complex content, xsd:choice, groups, sequences, attributes, and attribute groups. 953

[Rule CTD4] 954

Within a NIEM-conformant schema, the element xsd:all SHALL NOT occur. 955

Rationale 956

NIEM does not support use of xsd:all. Use of concretely-sequenced elements within complex types 957
simplifies many types of processing, and allows reference schemas to act as a base for highly 958
constrained, yet interoperable, subset schemas. 959

[Rule CTD5] 960

Within a NIEM-conformant schema, an occurrence of the element xsd:group acting as a particle 961
schema component according to [XMLSchemaStructures] MUST have values of "1" for the attributes 962
minOccurs and maxOccurs. 963

Rationale 964

Cardinality is restricted to maintain the simple-sequence compatibility of complex content. NIEM does not 965
permit complicated patterns of interlacing of elements. Elements have a strict sequential occurrence. 966

The value of "1" for minOccurs and maxOccurs is provided as default by XSD, and so need not be explicitly 967
expressed. 968

NIEM NDR Page 31 of 81
Draft Version 0.3
September 30, 2006

[Rule CTD6] 969

Within a NIEM-conformant schema, an occurrence of the element xsd:choice MUST have values of "1" 970
for the attribute minOccurs and maxOccurs. This value may be implicit. 971

The value of "1" for minOccurs and maxOccurs is provided as default by XSD, and so need not be explicitly 972
expressed. 973

[Rule CTD7] 974

Within a NIEM-conformant schema, an occurrence of the element xsd:sequence MUST have values of 975
"1" for the attributes minOccurs and maxOccurs. This value may be implicit. 976

The value of "1" for minOccurs and maxOccurs is provided as default by XSD, and so need not be explicitly 977
expressed. 978

[Rule CTD8] 979

Within a NIEM-conformant schema, complex content SHALL NOT declare occurrences of a single 980
element using more than one element statement. 981

Rationale 982

The goal here is simple sequences of elements. Allowing multiple element statements for a single 983
element creates situations where "Foo" is followed by "Bar" and again by "Foo", which puts structural and 984
organizational constraints within the XML data file. 985

[Rule CTD9] 986

Within a NIEM-conformant schema, an element or attribute that is eliminated through restriction and 987
reinserted by extension MUST conform to the original definition. 988

Rationale 989

The derived and extended content must maintain the "is-a" nature of derivation: Derived type "Foo" is-a 990
base type "Bar". Any constraints on "Bar" must be maintained in the derived type "Foo". 991

7.8.2. Exclusion of Wildcards 992

[Rule CTD10] 993

NIEM-conformant schemas SHALL NOT contain an occurrence of the element xsd:anyAttribute. 994

The element xsd:anyAttribute may appear within constraint schemas. 995

[Rule CTD11] 996

NIEM-conformant schemas SHALL NOT contain an occurrence of the element xsd:any. 997

Rationale 998

The elements xsd:anyAttribute and xsd:any provide wildcards, which may carry undefined content, in 999
violation of the principle of avoidance of wildcards. 1000

The element xsd:any may appear within constraint schemas. 1001

7.9. Element Definitions 1002

[Rule NEWRULE] 1003

An element declaration schema component defined by a NIEM-conformant schema may have a type 1004
attribute indicating a NIEM-conformant complex type. 1005

[Rule NEWRULE] 1006

An element declaration schema component defined by a NIEM-conformant schema may have an attribute 1007
value of true and a type definition of the XML Schema ur-type. 1008

NIEM NDR Page 32 of 81
Draft Version 0.3
September 30, 2006

[Rule NEWRULE] 1009

An element declara 1010

7.10. Element and Attribute Definitions 1011

[Rule ATN1] 1012

Each XML element and attribute name defined by the NIEM MUST correspond to a single representation 1013
type. 1014

Rationale 1015

The name of a XML element or attribute from a NIEM-conformant schema should be concrete. The 1016
element or attribute name alone should be sufficient in determining not only the semantic meaning, but 1017
also the type structure of that element or attribute. 1018

7.10.1. Specific Typing 1019

[Rule ATD1] 1020

NIEM-conformant schemas SHALL NOT declare attributes or elements to be of type xsd:anyType or 1021
xsd:anySimpleType, 1022

Rationale 1023

In accordance with the principle of avoidance of wildcards, NIEM schemas should not be able to pass 1024
untyped content. All content should have a comprehensible set of values that can be parsed. The type 1025
xsd:anyType allows untyped XML content to be carried as a payload. The type xsd:anySimpleType 1026
is a union of all possible simple types, and so provides no purposeful constraint on payload content. 1027

7.11. Attribute Declarations 1028

7.11.1. Global Attributes 1029

The NIEM distribution features attributes that are common to all elements. These common attributes are declared 1030
as attribute groups and utilize the following rule. 1031

[Rule ATD2] 1032

If a Schema Expression contains one or more common attributes that apply to all elements contained or 1033
included or imported therein, the common attributes SHOULD be declared as part of a global attribute 1034
group. 1035

Rationale 1036

For example: see the Global JXDM global attribute group named ”SuperTypeMetadata” 1037

7.11.2. Consistency of Attribute Content 1038

[Rule ATD3] 1039

NIEM-conformant schemas MUST NOT use the default attribute of the xsd:attribute element. 1040

Rationale 1041

The default attribute is used in conjunction with optional elements in attribute declarations. It provides a 1042
value for the attribute if the attribute does not appear. Such values are yielded to XML instance 1043
processing applications after schema validation occurs. The use of this attribute causes data presented 1044
to applications to be different than the data that appears in the instances themselves, in violation of the 1045
principle of invariant content. 1046

NIEM NDR Page 33 of 81
Draft Version 0.3
September 30, 2006

[Rule ATD4] 1047

NIEM-conformant schemas MUST NOT use the fixed attribute of the xsd:attribute element, 1048
except when used in conjunction with the use attribute having the value "required". 1049

Rationale 1050

The fixed attribute is used to ensure that a used attribute always has a specific value. When applied to 1051
an optional element, it acts like the default attribute, changing the content of the attribute upon schema 1052
validation. Using it with required attributes ensures that valid content always has the specific value, while 1053
allowing the pre- and post-validated content to be identical. 1054

NIEM NDR Page 34 of 81
Draft Version 0.3
September 30, 2006

8. Annotation Design Rules 1055

All NIEM-conformant schemas must include documentation. Some documentation is intended to be human 1056
readable ("user information"), and other documentation is machine-readable ("application information"). These 1057
terms come from [XMLSchemaStructures], a normative source. 1058

[Rule DOC10] 1059

The document element xsd:schema must follow the rules for documented components. 1060

Rationale 1061

A schema creates a new construct (a namespace), which must be documented. Such documentation 1062
describes the namespace as a whole. 1063

[Rule DOC11[1064

The document element xsd:schema must claim to be conformant using the appinfo element 1065
i:ConformantIndicator. 1066

The i:ConformantIndicator element is the method used by NIEM-conformant schemas to indicate that 1067
they are, in fact NIEM-conformant. 1068

 1069

8.1. User Information ("documentation") Elements 1070

[Rule DOC3] 1071

Within NIEM-conformant schemas, the content of xsd:documentation elements SHALL NOT contain 1072
structured XML data. 1073

Rationale 1074

According to the XSD specification the content of xsd:documentation elements is intended for human 1075
consumption. XML content is intended for machine consumption. As such, any XML content appearing in 1076
xsd:documentation should be in the context of human-targeted examples, and should be escaped using 1077
< and >. 1078

See [SchemaForXMLSchema], the schema for XML Schema, as an example. 1079

[Rule DOC4] 1080

The attribute xml:lang SHALL be used to indicate the language of user information in NIEM-1081
conformant schemas. 1082

Rationale 1083

XSD spec indicates that user info should use xml:lang to indicate the language of the user info. Note that 1084
the value of xml:lang is inherited by child elements, so the attribute need not be owned directly by the 1085
xsd:documentation element. 1086

8.2. Application Information ("appinfo") Elements 1087

[Rule DOC5] 1088

An xsd:appinfo element SHALL contain well-formed XML data that conforms to [XMLNamespaces]. 1089

Rationale 1090

Application information elements are intended for "automatic processing", and so should contain 1091
machine-oriented data, XML. Such XML should conform to specifications.3 1092

3 The XML Schema specification states "{user information} is intended for human consumption, {application
information} for automatic processing."

NIEM NDR Page 35 of 81
Draft Version 0.3
September 30, 2006

[Rule DOC6] 1093

Any element that is an immediate child of an xsd:appinfo elements SHALL be in a namespace. 1094

Rationale 1095

Appinfo may contain XHTML data (which has no schema), or NIEM appinfo data (which has a schema). 1096
Use of default namespace is OK, but content has to have a real namespace. The XML namespaces 1097
specification includes the concept of non-namespaced content. Non-namespaced data confounds the 1098
concept of distinctly identifiable data definitions. 1099

[Rule DOC7] 1100

Within a NIEM-conformant reference schema, a namespace that is a descendent of an xsd:appinfo 1101
element SHALL be imported using the xsd:import element. 1102

Rationale 1103

The import of appinfo content is not strictly required by the XSD specification, but some tools break 1104
without it, and it helps users maintain connections between namespaces and implementations. 1105

8.3. Documented Components 1106

There are many types of components within a NIEM schema. Many of these components have identical rules 1107
regarding techniques for documentation. The rules in this section apply when a rule for a component type 1108
indicates that the component is a documented component. 1109

[Definition: Documented Component] 1110

A documented component is any component defined by a NIEM-conformant schema which requires 1111
documentation. Documented components are indicated as such by component-specific rules. 1112

[Rule DOC9] 1113

A documented component must contain a definition. Its definition is the first occurrence of an element 1114
xsd:documentation that is a child of an element xsd:annotation that is a child of the element that 1115
defines the component. 1116

8.4. Types of Annotations in Reference Schemas 1117

8.4.1. xsd:documentation: Summary 1118

In keeping with [XMLSchemaDatatypes], the content of xsd:documentation elements is intended for human 1119
consumption, not machine consumption. As such, it should contain text, not XML, except when the intent is to 1120
provide XML examples. In such cases, the escape sequences “<” and “>” should be substituted for the XML 1121
brackets “<” and “>” respectively. 1122

[Definition: summary documentation element] 1123

Within a NIEM-conformant reference schema, a summary documentation element SHALL be defined as 1124
an element xsd:documentation which does not own an attribute 1125
structures:annotationCategoryURI. 1126

Rationale: 1127

Any documentation element which does not carry an annotationCategoryURI attribute is assumed to be a 1128
summary. 1129

[Rule DOC8] 1130

Within a NIEM conformant reference schema, there SHALL exist a summary documentation element as a 1131
child of an element xsd:annotation that is a child of every occurrence of the following elements: 1132
xsd:import, xsd:simpleType, xsd:complexType, xsd:group when acting as a model group 1133
definition schema component, xsd:attributeGroup when acting as an attribute group definition 1134

NIEM NDR Page 36 of 81
Draft Version 0.3
September 30, 2006

schema component, xsd:element when acting as an element declaration schema component, or 1135
xsd:attribute when acting as an attribute declaration schema component. 1136

Rationale 1137

These elements are the elements that act as definitions. They must be annotated properly, including 1138
basic summaries. Note that the specific "acting" clauses are clearly defined in the XSD specification. 1139

8.4.2. xsd:documentation: Full Description 1140

8.4.3. xsd:appinfo: For Components 1141

8.4.4. xsd:appinfo: List of Abbreviations 1142

8.5. NIEM appinfo Namespace 1143

To enable higher-level constructs beyond those provided by XML Schema, the NIEM includes additional, non-1144
schema values to provide information about constructs in schemas. These properties are represented by 1145
elements from a specific namespace, referred to as the appinfo namespace. The appinfo namespace for 1146
NIEM is "http://niem.gov/niem/appinfo/1.0". The schema for this namespace defines several elements 1147
that are used in NIEM schemas. 1148

8.5.1. The ConformantIndicator element 1149

The element appinfo:ConformantIndicator is used for two purposes. 1150

1. To indicate that a schema is conformant, or represents a conformant namespace. 1151

2. To indicate that an imported schema is not conformant, or represents a non-conformant namespace. 1152

[Rule NEWRULE] 1153

The element appinfo:ConformantIndicator shall have a value of either true or false. The element 1154
MUST appear in appinfo for a component and will indicate: 1155

• For a schema component, it indicates: 1156
• true: the schema is a NIEM-conformant schema 1157
• false: the schema is not a NIEM-conformant schema 1158

• For a import element, it indicates: 1159
• true: the imported schema represents a NIEM-conformant namespace 1160
• false: the imported schema does not represent a NIEM-conformant namespace 1161

NIEM NDR Page 37 of 81
Draft Version 0.3
September 30, 2006

9. Subset Schemas Design Rules 1162

A subset schema is a NIEM-conformant schema which is derived from a NIEM-conformant reference schema. 1163
The primary rule is that any instance that validates to the subset schema must validate to the reference schema. 1164

Note that these rules are not intended to act as a guide or procedure for generating subset schemas from 1165
reference schemas. They are intended to act as a set of constraints that ensure that generated schemas are 1166
properly defined subsets. 1167

[Definition: NIEM-conformant subset schema] 1168

A NIEM-conformant subset schema is defined as a NIEM-conformant schema which is derived from a 1169
NIEM-conformant reference schema according to the rules provided by this document. 1170

Rationale 1171

A subset schema is as defined by this document. 1172

[Rule SSR2] 1173

A NIEM-conformant subset schema MUST be constructed such that any instance that validates against 1174
the subset schema SHALL validate to the reference schema on which it is based. All other rules 1175
regarding subset schemas are designed to support this rule. 1176

Rationale 1177

The most important rule regarding subset schemas is that they are to be transparent to the validating 1178
application. Any instance that validates to the subset schema must be able to validate against the 1179
reference schema. In this way, the subset schema is a schema for documents that contain a subset of 1180
the content available to documents that validate against the reference schema. 1181

[Rule SSR3] 1182

A NIEM-conformant subset schema SHALL be derived only via transformations explicitly allowed by this 1183
document. 1184

Rationale 1185

This document describes all of the transformations available to produce subset schemas. Other 1186
transformations do not result in valid subsets. If additional transformations are discovered, they should be 1187
added to this specification. 1188

[Rule SSR4] 1189

A NIEM-conformant subset schema SHALL be composed of the content of the NIEM-conformant 1190
reference schema, modified by transformations allowed by this document. 1191

Rationale 1192

Subset schemas are derived from reference schemas. This means that a subset schema operates on the 1193
target namespace and content of the reference schema. It may act as a replacement for the reference 1194
schema, for certain application processing or human browsing. 1195

When transforming from a reference schema to a subset schema, requirements of outside sources must be 1196
maintained. If an element is used by an outside source, then it can't be deleted. If a type uses an element, then 1197
that element must be defined. All such requirements must be kept in mind as the subset schema is constructed. 1198

[Rule SSR5] 1199

The derivation of NIEM-conformant subset schemas is subject to the rules of XML Schema. No permitted 1200
transformations obviate this requirement. 1201

Rationale 1202

These rules may specify that an element may be omitted, but that does not override the requirements of 1203
XSD. All types, elements, etc., that need to be validated should be included within the subset schema. 1204

NIEM NDR Page 38 of 81
Draft Version 0.3
September 30, 2006

Note that using these rules to derive a schema from a valid subset schema will generate a valid subset schema. 1205
A valid subset of a valid subset is itself a valid subset. 1206

9.1. Schema Document Element 1207

[Rule SSR6] 1208

The subset schema may omit any of the following child elements of the NIEM-conformant reference 1209
schema's xsd:schema document element: xsd:import, xsd:simpleType, 1210
xsd:complexType, xsd:group, xsd:attributeGroup, xsd:element, xsd:attribute. 1211

Rationale 1212

Many of the definition schema components may be omitted, if they are not otherwise required. They are 1213
"omittable." This does not mean that users must remove them, or that it won't be a violation of XSD for 1214
them to omit such components. Note that omission of an element implies omission of the element and all 1215
child elements, attributes, and namespace prefix definitions. 1216

9.2. Annotations 1217

[Rule SSR7] 1218

Any element xsd:annotation, xsd:appinfo, or xsd:documentation may be omitted from a subset 1219
schema. 1220

Rationale 1221

Annotations are merely informative to the XSD validation process, and so may be dropped. Specific 1222
annotations may be required in reference schemas, but may be omitted from subset schemas. 1223

 1224

9.3. Simple Type Definition 1225

[Rule SSR8] 1226

An attribute final owned by the element xsd:simpleType may be expanded in scope. It may be set 1227
to "#all", or to a superset of its value, or to a valid value if empty. 1228

Rationale 1229

Subclasses may wish to prevent elements from being substituted via element / substitution group 1230
substitution. In such a case, the value for final may be expanded to satisfy requirements. 1231

9.4. Simple Content Definition 1232

Note that these rules apply to simple types, as well as to simple content in a complex type. 1233

[Rule SSR9] 1234

An element xsd:enumeration, child of element xsd:restriction, may be omitted, provided that it 1235
has a sibling element xsd:enumeration which is not omitted. The final xsd:enumeration child of 1236
an element xsd:restriction SHALL NOT be omitted. 1237

Rationale 1238

If the last xsd:enumeration is omitted, it drastically expands the set of legal values for the type. 1239

[Rule SSR10] 1240

The following elements, children of element xsd:restriction, may be added or adjusted to reduce the 1241
set of legal values: xsd:minExclusive, xsd:minInclusive, xsd:maxExclusive, 1242
xsd:maxInclusive, xsd:minLength, xsd:maxLength. 1243

NIEM NDR Page 39 of 81
Draft Version 0.3
September 30, 2006

[Rule SSR11] 1244

The following elements, children of element xsd:restriction, may be added to reduce the set of legal 1245
values: xsd:totalDigits, xsd:fractionDigits, xsd:length, xsd:pattern. 1246

Rationale 1247

Simple type facets may be added or strengthened to limit the available set of valid values. In no case is it 1248
acceptable to enlarge the set of allowable values. 1249

9.5. Complex Type Definition 1250

Note that the rules specified in section 9.4, Simple Content Definition, apply to complex type definitions with 1251
simple content. 1252

[Rule SSR12] 1253

The attribute block owned by element xsd:complexType, or by element xsd:element, may be 1254
expanded in scope. It may be set to "#all", or to a superset of its original value, or to a valid value if 1255
empty. 1256

Rationale 1257

Block prevents subtypes from being substituted for the specified element. This may be enabled or 1258
strengthened. 1259

[Rule SSR13] 1260

The attribute final owned by element xsd:complexType may be expanded in scope. It may be set 1261
to "#all", or to a superset of its value, or to a valid value if empty. 1262

Rationale 1263

Final prevents substitution groups from being used in element substitution. This may be enabled or 1264
strengthened 1265

9.6. Attribute Declarations 1266

[Rule SSR14] 1267

The element xsd:attribute, when used as an attribute use schema component, may be omitted, if 1268
the value of its attribute use is "optional" or "prohibited" 1269

Rationale 1270

Attributes which are optional may be removed. 1271

Note that prohibited attributes may be omitted, but that does not imply that types derived from a type with a 1272
removed prohibited attribute may add the prohibited attribute. Schemas must be built from the reference 1273
schemas, and then subset. They should not be built from the subset schemas, at the risk of invalidity or non-1274
conformance. 1275

[Rule SSR15] 1276

The attribute xsd:attribute, when used as an attribute use schema component, MAY have a 1277
modified value which narrows the use of the attribute. If the reference value is "optional," then the 1278
subset may have any value. Otherwise, it MUST have the original value. 1279

Rationale 1280

Optional attributes may be required or removed. Those attributes which are already required or 1281
prohibited must stay that way. 1282

NIEM NDR Page 40 of 81
Draft Version 0.3
September 30, 2006

[Rule SSR16] 1283

An element xsd:attributeGroup which does not act as an attribute group definition may be omitted 1284
only if all components declared by the attribute group are omittable. 1285

Rationale 1286

An attribute group may only be removed if all of its components are themselves removable. If any 1287
component of the attribute group is required, the attribute group must persist. 1288

9.7. Complex Content 1289
These rules provide methods for simplifying and reducing the model group defined in complex content. 1290

[Rule SSR17] 1291

An element xsd:group, xsd:choice, or xsd:sequence, SHALL NOT be omitted in a subset 1292
schema if its reference definition parent element is xsd:complexType, xsd:extension, or 1293
xsd:restriction. 1294

Rationale 1295

group, choice, and sequence that are roots of the particle schema component may not be eliminated, 1296
as it has substantial changes on the contents allowable by the schema construct defined by the parent 1297
element. 1298

[Rule SSR18] 1299

The element xsd:group, when used as a particle schema component, may be omitted from the subset 1300
schema, only if its reference element has a minOccurs attribute with a value of "0", or if all components 1301
declared by the group are themselves omittable. 1302

Rationale 1303

A group may be removed if it is, as a whole, optional. 1304

[Rule SSR19] 1305

The element xsd:choice may be omitted from the subset schema only if its reference element has a 1306
minOccurs attribute with a value of "0", or if all components declared by the choice model group are 1307
themselves omittable. 1308

Rationale 1309

A choice element may be removed if it is, as a whole, optional 1310

[Rule SSR20] 1311

The element xsd:sequence may be omitted from the subset schema only if its reference element has 1312
a minOccurs attribute with a value of "0", or if all components declared by the sequence model group 1313
are themselves omittable. 1314

Rationale 1315

A sequence may be removed if it is, as a whole, optional. 1316

[Rule SSR21] 1317

For any of xsd:group when used as a particle schema component, xsd:element when used as a 1318
particle schema component, xsd:choice, or xsd:sequence, the attributes minOccurs and 1319
maxOccurs may be adjusted to narrow the occurrence of subcomponents. 1320

Rationale 1321

A group may be removed if it is, as a whole, optional. Note that the "particle schema component" 1322
language is provided by [XMLSchemaStructures]. 1323

NIEM NDR Page 41 of 81
Draft Version 0.3
September 30, 2006

[Rule SSR22] 1324

The element xsd:element when used as a particle schema component may be omitted from the 1325
subset schema only if its reference element as a minOccurs attribute with a value of "0". 1326

Rationale 1327

A group may be removed if it is, as a whole, optional. 1328

9.8. Element Definition 1329

[Rule SSR23] 1330

The attribute final of element xsd:element may be expanded in scope. It may be set to "#all", or to 1331
a superset of its value, or to a valid value if empty. 1332

Rationale 1333

Final prevents substitution groups from being used in element substitution. This may be enabled or 1334
strengthened 1335

[Rule SSR24] 1336

The attribute block of element xsd:element may be expanded in scope. It may be set to "#all", or to 1337
a superset of its value, or to a valid value if empty. 1338

Rationale 1339

Block prevents subtypes from being substituted for the specified element. This may be enabled or 1340
strengthened. 1341

[Rule SSR25] 1342

The attribute nillable on an element xsd:element may be set to "false" regardless of the value 1343
of nillable in the reference element. 1344

NIEM NDR Page 42 of 81
Draft Version 0.3
September 30, 2006

10. Constraint Schema Design Rules 1345

[Definition GJXDOM-compatible constraint schema] 1346

A NIEM-compatible constraint schema is a schema that follows the rules for NIEM-compatible constraint 1347
schemas as specified by this document. 1348

 [Rule CSR1] 1349

A NIEM-compatible constraint schema has a targetNamespace identical to the targetNamespace 1350
of a NIEM-conformant reference schema. 1351

Rationale 1352

Constraint schemas operate by adding additional validation testing on already-valid content. Content 1353
must validate against NIEM-conformant reference schemas to be considered a NIEM-conformant 1354
instance. 1355

NIEM NDR Page 43 of 81
Draft Version 0.3
September 30, 2006

11. Extension Schema Design Rules 1356

NIEM NDR Page 44 of 81
Draft Version 0.3
September 30, 2006

12. Document Schema Design Rules 1357

NIEM NDR Page 45 of 81
Draft Version 0.3
September 30, 2006

13. Conformant Instance Rules 1358

This specification attempts to restrict XML instance data as little as possible, while still maintaining interoperability. 1359

 [Rule IND1] 1360

A NIEM-conformant instance MUST have a document element that is defined in a NIEM-conformant 1361
schema. 1362

Rationale 1363

The root of a NIEM-conformant instance MUST be an element defined in a NIEM-conformant schema. 1364
The term document element is defined by [XMLInfoSet]. 1365

[Rule IND2] 1366

A NIEM-conformant instance MUST validate to the reference schemas for namespaces contained in the 1367
instance, and for namespaces required for validation. 1368

Rationale 1369

Reference schemas determine the exchange language. Derived schemas, and subsets, are for specific 1370
applications, but it is the reference schemas that set the standard for conformance. 1371

NIEM embraces the use of XML schema instance attributes, including xsi:type, xsi:nil, and xsi:schemaLocation, 1372
as specified by [XMLSchemaStructures]. 1373

[Rule IND3] 1374

Within a NIEM-conformant instance, the meaning of an element with no content is undefined. There 1375
SHALL NOT be a meaning assigned to an element with no content. 1376

Rationale 1377

Elements without content have no specific meaning within NIEM. The lack of data should not be 1378
interpreted to mean anything other than that such data is not present. 1379

The NIEM does not require a specific encoding, or specific requirements for the XML prolog, except as specified 1380
by [XML]. 1381

 1382

NIEM NDR Page 46 of 81
Draft Version 0.3
September 30, 2006

14. NIEM Data Modeling Guide 1383

This document is a developer's guide to creating XML Schema documents for use with the National Information 1384
Exchange Model (NIEM). It presents guidelines for using specific structures and idioms in NIEM-conformant XML 1385
Schema documents. 1386

14.1. Overview of Data Modeling 1387

This section outlines the basic techniques for creating data within NIEM, and for creating meaningful links 1388
between data items. 1389

The paper makes a distinction between types and classes. In this section, the term "type" is used to refer to XML 1390
Schema types, which include complex types and simple types. The term "class" is used to refer to a specific 1391
entity in the data model. 1392

A class may represent a real world object, but it may also represent any conceptual object, such as relationships 1393
and messages. 1394

14.1.1. Properties 1395

In order to understand how classes are created, we must understand the components that give meaning to the 1396
model: properties. A property is a component that describes a relationship between two classes. The general 1397
description is that a class has a property, and the value of the property is another class. For example, a person 1398
may have a property "person name" which has a value of "person name type". 1399

Properties are turned into XML Schema elements for use in XML. Because of the syntax provided by XML, there 1400
are two representations of properties: content elements and reference elements. A content element is an element 1401
that, in XML, contains its value. In the following example, the element PersonName is a content element, 1402
because its content, in XML is an instance of its value class, "person name type". 1403

XML example: PersonName is a content element 1404

<Person> 1405
 <PersonName> 1406
 <PersonGivenName>Robert<PersonGivenName> 1407
 <PersonSurName>Smith</PersonSurName> 1408
 </PersonName> 1409
 <PersonBirthDate>1970-01-01</PersonBirthDate> 1410
</Person> 1411

A reference element is a representation of a property. In a reference element, the element points to its value 1412
using a reference. A reference element indicates its value using a reference to an identifier. In the following 1413
example, PersonNameReference is a reference element, indicating the value of the name using a reference to 1414
the ID "A". 1415

XML example: PersonNameReference is a reference element 1416

<Person> 1417
 <PersonNameReference s:reference="A"/> 1418
 <PersonBirthDate>1970-01-01</PersonBirthDate> 1419
</Person> 1420
 1421
<PersonName s:id="A"> 1422
 <PersonGivenName>Robert<PersonGivenName> 1423
 <PersonSurName>Smith</PersonSurName> 1424
</PersonName> 1425

Some properties are containers. A container is a property which does not establish a semantically strong 1426
relationship. The relationship described by a container property is semantically weak. A container indicates that a 1427

NIEM NDR Page 47 of 81
Draft Version 0.3
September 30, 2006

class (the one that has the property) has an instance of the value class. Containers generally have names based 1428
on their types; "person type" uses a container "person". The class "activity type" uses a container "activity". 1429

For example, an "incident" may have a property "person". This indicates that an incident involved a person, but 1430
doesn't tell us what role the person played, or any additional meaning about the involvement of the person in the 1431
incident. 1432

14.1.2. Methods for Creating Classes 1433

There are several methods for creating data classes. Each of these methods creates new types of "things" in the 1434
data model. 1435

14.1.2.1. Composition: Basic Class Construction 1436

The basic method for creating classes is by composition of different parts. The parts of a class are properties. 1437
The parts composed ("put together") as a sequence of properties. These properties indicate that the class has a 1438
characteristic, a relationship, or a subpart. For example: 1439

• A person may have the property "birth location", which indicates a relationship: the place where a person 1440
was born. 1441

• A person may have the property "eye color", a characteristic. 1442
• A vehicle may have the property "cargo", contents of the vehicle. 1443

NIEM does not attempt to make concrete distinctions between these types of properties. It uses the same 1444
methods for each of them. 1445

Properties that are put together to form a class may take the form of content elements or reference elements. 1446
Which of these two is selected is often determined by use cases and complexity. For example, a birth date would 1447
be represented as a content element. Even though lots of people could have the same birth date, and the date 1448
could be used for many purposes, it is generally easier to just use copies of the date, when it is used in multiple 1449
places. 1450

Definition of people, however, may often take the form of a reference element. As the definition of a person may 1451
be complicated, it makes little sense to copy its value when it is needed in multiple places. It is more effective to 1452
reference a single definition, instead. 1453

14.1.2.2. Roles 1454

A role is a specific kind of class, which represents a particular context or activity for a thing. A role may be specific 1455
to time, incident, or employment. For example, if I pick up an object and hit someone with it, the object will take 1456
on the role of a weapon, and I will take on the role of a "justice subject", and the person I hit may take on the role 1457
of "victim". If I steal the object, the object will take the role of "stolen property". 1458

We create a new class for a role when the role has specific data associated with it, and its own life cycle. For 1459
example, a weapon may be a role of an object, and may have a user of the weapon, an activity in which it is 1460
involved, and a description of how the weapon was used. 1461

If there is no data specific to the role, then no new class needs to be created. In such a case, we would use the 1462
class of the thing as the value of properties, instead of creating new role classes. Take, for example, a vehicle 1463
used as a getaway car from a robbery. When designing the objects, we may take one of two options: 1464

1. A robbery incident has a property ("getaway car") that is a "vehicle" 1465

2. A robbery incident has a property ("getaway car") that is a role of a vehicle. The "role class" may have 1466
additional information (e.g. driver, violations, max speed, and origination point) that is specific to the 1467
vehicle's use as a getaway car. 1468

We only need to create role classes when there is data specific to a role. We do not want to create role classes 1469
for every possible use of a particular class. 1470

Any object may take multiple roles in a message. For example, a single person may take the role of "arresting 1471
officer", "victim", and "witness". 1472

NIEM NDR Page 48 of 81
Draft Version 0.3
September 30, 2006

In XML Schema, a role is represented as a type. The type has a particular "role of" property, which indicates of 1473
what object it is a role. 1474

XML Schema example for a weapon, a role of an object. 1475

<xsd:complexType name="WeaponType"> 1476
 <xsd:sequence> 1477
 <xsd:element ref="u:RoleOfPropertyReference" ... /> 1478
 <xsd:element ref="c:WeaponUserReference" ... /> 1479
 <xsd:element ref="c:WeaponInvolvedInActivityReference" ... /> 1480
 <xsd:element ref="c:WeaponUsageText" ... /> 1481
 </xsd:sequence> 1482
</xsd:complexType> 1483

The example shows the definition of a "weapon", which is a role of "property" (a physical object in NIEM 0.3). The 1484
element "u:RoleOfPropertyReference" shows which object was used as a weapon. In an instance it 1485
contains a reference to the object that was used as a weapon: 1486

Sample XML of a weapon object 1487

<Weapon> 1488
 <u:RoleOfPropertyReference s:ref="O"/> 1489
 <c:WeaponUserReference s:ref="P"> 1490
 <c:WeaponUsageText>Swung like a club</c:WeaponUsageText> 1491
</Weapon> 1492

This represents a weapon, which is a role of object "O", when used by person "P". 1493

 1494

14.1.2.3. Association 1495

An association represents a relationship between objects. It uses the methods described above. However, it is 1496
special in several ways: 1497

1. It is labeled as an association type. 1498

2. It represents a specific relationship between objects. 1499

3. It contains mostly reference elements. Elements that are not reference elements should be information 1500
about the context of the relationship. 1501

An association is used when a simple property is insufficient. Take for example, a parent-child relationship. We 1502
could represent this as simple properties: 1503

1. The parent object has a "child" property. The value of the property is the child of the parent. 1504

2. The child object has a "parent" property. The value of the property is the parent of the child. 1505

These two options create concerns: 1506

• For a given relationship, which method do we use? Do we link from the child, or from the parent, or both? 1507
• If these are represented as content elements, what do we do about the circular reference? 1508
• Where do we put additional information about the relationship? 1509

To resolve these issues, we use an association type: 1510

3. We create a new object that represents the relationship between the parent and the child. 1511

An association type is composed of properties, as in the composition method. However, those properties do not 1512
describe an object. They describe a relationship. This gives us two types of properties in an association: 1513

1. Data properties, describing the context and particulars of the relationships 1514

NIEM NDR Page 49 of 81
Draft Version 0.3
September 30, 2006

2. Participants, describing the objects involved in the relationships. 1515

For the parent-child association example, an instance may look like the following. 1516

XML sample of a parent-child relationship 1517

<NuclearFamily> 1518
 <PersonParentReference s:ref="Person1"/> 1519
 <PersonChildReference s:ref="Person2"/> 1520
 <FamilyKinshipText>Adopted</FamilyKinshipText> 1521
</NuclearFamily> 1522

14.1.2.4. Specialization of Classes 1523

Specialization is a method that creates a new class from a base class. The base class is some established type 1524
of thing in the data model. We create a special form of the base class called the derived class. We do this 1525
through specialization. Specialization is described by Wikipedia: 1526

Specialization is the opposite of generalization. 1527

Concept B is a specialization of concept A if and only if: 1528

• every instance of concept B is also an instance of concept A; and 1529
• there are instances of concept A which are not instances of concept B. 1530

For instance, 'Bird' is a specialization of 'Animal' because every bird is an animal, and there are 1531
animals which are not birds (dogs, for instance). 1532

Specialization in the data model is represented in XML Schema as complex type extension. For example, a case 1533
is a special form of activity: 1534

XML Schema sample of specialization 1535

<xsd:complexType name="CaseType"> 1536
 <xsd:complexContent> 1537
 <xsd:extension base="c:ActivityType"> 1538
 <xsd:sequence> 1539
 <xsd:element ref="c:CaseTitleText" ... /> 1540
 <xsd:element ref="c:CaseTypeText" ... /> 1541
 <xsd:element ref="c:CaseCategoryText" ... /> 1542
 ... 1543
 <xsd:element ref="c:CaseStatus" ... /> 1544
 </xsd:sequence> 1545
 </xsd:extension> 1546
 </xsd:complexContent> 1547
</xsd:complexType> 1548

In data models, specialization should only be used to create a new type of thing. It is not an appropriate way to 1549
define additional properties of the base type, as that would hinder reuse. 1550

Specialization enables type and element substitution, where the derived class may be used where the base class 1551
is expected. 1552

14.1.3. Additional Data Methods 1553

There are additional methods for applying data to classes, which do not directly create new classes. Instead, 1554
these methods apply data to classes, without creating new classes. 1555

NIEM NDR Page 50 of 81
Draft Version 0.3
September 30, 2006

14.1.3.1. Metadata 1556

Metadata is a structure used to provide information about objects, in a very dynamic fashion. It is used when a 1557
certain type of data must be applied widely, without modifying existing structures. 1558

XML instance using metadata 1559

<Person> 1560
 <PersonName s:metadata="unclassified"> 1561
 <PersonGivenName>Robert<PersonGivenName> 1562
 <PersonSurName>Smith</PersonSurName> 1563
 </PersonName> 1564
 <PersonBirthDate s:metadata="classified">1970-01-01</PersonBirthDate> 1565
</Person> 1566
 1567
<ism:SecurityMetadata 1568
 s:id="unclassified" 1569
 ism:classification="U"/> 1570
<ism:SecurityMetadata 1571
 s:id="classified" 1572
 ism:classification="C" 1573
 ism:nonICmarkings="..." 1574
 ism:releasableTo="..." 1575
 ism:ownerProducer="..."/> 1576

14.1.3.2. Augmentation 1577

Augmentation of an object is the addition of domain- or model-specific information about a type. 1578

NIEM is composed of numerous namespaces. These include the core NIEM namespaces (universal and 1579
common). Also included in NIEM are sanctioned domains, such as justice, immigration, and emergency 1580
management. Also working with NIEM are user-created NIEM-conformant namespaces. Each of these 1581
namespaces makes up a part of the data model for any application. 1582

In this environment, any given part of the data model may need to add properties to existing classes. Some 1583
examples, from NIEM 0.3: 1584

• Add a nick name to a person name (im) 1585
• Add a distance to a relative location (im) 1586
• Add directions to a location (em) 1587
• Add an organizational role to a contact (em) 1588
• Add registration information to an aircraft (intel) 1589
• Add skillfulness information to a capability (intel) 1590

This method stands apart from other methods, because: 1591

1. It does not introduce new concepts. There is a need for domains to add properties to existing classes, 1592
without creating new classes for new concepts. 1593

2. It does not define a specialized type of thing. Properties need to be added to existing classes, not 1594
specialized classes. 1595

3. There is no relationship to represent. The new properties are not in the context of a relationship to an 1596
organization or other entity. Instead, the properties are applicable to the base object. 1597

4. The properties are defined by a domain or other party with a focused area of interest. It is impractical 1598
to include all such properties into core or common schemas, for general use. Domains need to be able 1599
define data for their use, independent from common definitions. 1600

5. Designers of exchanges may wish to reuse these properties; their use is not limited to a single domain. 1601

NIEM NDR Page 51 of 81
Draft Version 0.3
September 30, 2006

14.2. Normalizing Element Use 1602

All elements within types may be represented two ways: 1603

1. A content element 1604

2. A reference element. 1605

14.2.1. Content Elements 1606

Content elements enclose data. The following is an example: 1607

<Person s:id="A"> 1608
 ... 1609
 <PersonName> 1610
 <PersonFullName>Adam Smith</PersonFullName> 1611
 </PersonName> 1612
 ... 1613
</Person> 1614

In this example, there is a person object. The person contains an element called PersonName. The PersonName 1615
element contains an element called PersonFullName. The PersonFullName element contains a string Adam 1616
Smith. The PersonFullName element is obviously a content-containing element. It has the person’s name (a 1617
literal string) as its content. 1618

The PersonName is also a content-containing element, as its content represents the person name, as a 1619
structured object. It contains the element PersonFullName, and could contain additional elements. 1620

14.2.2. Reference Elements 1621

Reference elements do not enclose content. Instead, they reference content as external objects: 1622

<Incident> 1623
 <ActivityDate>2003-10-02</ActivityDate> 1624
 ... 1625
 <IncidentSeizedPropertyRef s:ref="C"/> 1626
 ... 1627
</Incident> 1628

In the above example, the property that was seized as part of the incident is referenced out to another object, an 1629
XML object in the same XML instance, with the identifier C. 1630

<Property s:id="C"> 1631
 <PropertyDescriptionText> 1632
 White microwave oven 1633
 </PropertyDescriptionText> 1634
 <PropertyTypeCode>HOVEN</PropertyTypeCode> 1635
 <PropertyMakeName>Kenmore</PropertyMakeName> 1636
 <PropertyModelName>63292</PropertyModelName> 1637
</Property> 1638

The object that has the identifier C is an instance of Property, specifically representing a microwave oven. The 1639
reasons for representing the microwave oven outside of the incident should be quite evident: it is its own object, 1640
independent of the incident. It has its own life cycle. If the incident did not exist, the microwave oven would still 1641
exist. 1642

NIEM NDR Page 52 of 81
Draft Version 0.3
September 30, 2006

The seized property is an element of the incident because it is a fixed part of the incident. The incident involved 1643
the seizing of the property, and that will not change. However, the incident should be a reference element, as the 1644
property has its own life cycle, outside of the incident. 1645

14.2.2.1. Identifying types for reference elements 1646

All reference elements are of the same XML Schema type: ReferenceType from the structures namespace. 1647
However, we would like to validate the XML Schema type of the thing to which the reference is referring (the 1648
referred object). For example: 1649

<IncidentSeizedPropertyRef s:ref="C"/> 1650

For IncidentSeizedProperty, we would like the XML Schema type of the referred object to be 1651
PropertyType, or something derived from that type. XML Schema does not help us here, because it does not 1652
support type checking of reference targets. XML Schema supports XML:ID and XML:IDREF types, but the 1653
constraints applied to them are few: no ID may be defined more than once, and any IDREF must refer to a 1654
defined ID. Beyond that, XML Schema does not help. 1655

To define the type of referred objects, we add additional non-XSD information to the schema, which we may 1656
interpret with programs, stylesheets, or constraint languages. This additional information is added to the element 1657
definitions, and concretely specifies the type of referred objects. 1658

<xs:element name="IncidentSeizedPropertyRef" 1659
 type="s:ReferenceType"> 1660
 <xs:annotation><xs:appinfo> 1661
 <i:referenceTarget i:name="PropertyType"/> 1662
 </xs:appinfo></xs:annotation> 1663
</xs:element> 1664

In this example, the incident seized property is specifically defined to be of type PropertyType in the same 1665
namespace. Following XML Schema rules, we would expect the target of the reference to be of type 1666
PropertyType, or of a type properly derived from PropertyType. 1667

14.2.2.2. Defining Elements 1668

For each existing element occurring in a type: 1669

• If the element links to a peer object, or to an independent object, then define it as a reference element 1670
• If the element constitutes a characteristic or subpart of the containing object, then define it as an in-1671

line content element 1672
• If the element should be an association, then 1673

• remove it from the containing type 1674
• create a new association type for it 1675
• add the containing type as a related object 1676
• add the type of the original element as a related object, and 1677
• add properties for the association, as needed 1678

14.3. Element Substitution 1679

XML Schema provides numerous ways to define and use elements. Use of elements within NIEM feature two 1680
major concepts: 1681

Types: A type represents a thing as a structured or simple value. Types represent entities or associations 1682
between entities. Types may be large and structured, with many subparts, or be simple, restricted values 1683
(e.g. a number between 1 and 10). 1684

NIEM NDR Page 53 of 81
Draft Version 0.3
September 30, 2006

Elements: An element conveys the meaning, or role, of a thing. An element may be a generic, context free holder 1685
for a type (referred to as a container). An element may also be context-specific (referred to as a property). 1686
An element may have at most one type. 1687

Elements and types are both defined by XML Schema Documents (schemas). Elements and types within NIEM 1688
are always defined within a namespace, the target namespace of the schema. Elements in schemas are defined 1689
by XML statements: 1690

<xsd:element 1691
 name="LocationCountryISO3166Alpha2Code" 1692
 type="iso_3166:CountryAlpha2CodeType"/> 1693

This defines an element with the name LocationCountryISO3166Alpha2Code, with the type 1694
iso_3166:CountryAlpha2CodeType. The element LocationCountryISO3166Alpha2Code is used within 1695
a type, generally within an xsd:sequence. This XML statement defines an element that may be used in an XML 1696
document: 1697

<DocumentCoverageTextAddress> 1698
 ... 1699
 <LocationCountryISO3166Alpha2Code> 1700
 US 1701
 </LocationCountryISO3166Alpha2Code> 1702
 ... 1703
</DocumentCoverageTextAddress> 1704

This XML data contains an element “LocationCountryISO3166Alpha2Code”. The content of the element (i.e. 1705
attributes along with sub-elements or simple content) is as defined by the type of the element 1706
(LocationCountryISO3166Alpha2Code). 1707

14.3.1. Methods 1708

14.3.1.1. Use substitutionGroup 1709

Use substitutionGroup to derive elements from other elements. 1710

The attribute substitutionGroup appears on element definitions. It indicates an element for which the element 1711
being defined may be substituted. Take, for example the following definitions. 1712

In the common namespace, an element is defined that contains codes for all countries recognized by ISO 3166: 1713

<xsd:element 1714
 name="LocationCountryISO3166Alpha2Code" 1715
 type="iso_3166:CountryAlpha2CodeType"/> 1716

In a local namespace, we may define an element that contains codes for all the South American countries: 1717

<xsd:element 1718
 name="LocationSouthAmericaCountryCode" 1719
 type="my:SouthAmericaCountryCodeType" 1720
 substitutionGroup="c:LocationCountryISO3166Alpha2Code"/> 1721

Now, in an instance, we may put my:LocationSouthAmericaCountryCode wherever 1722
my:LocationCountryISO3166Alpha2Code is expected. 1723

NIEM NDR Page 54 of 81
Draft Version 0.3
September 30, 2006

1. This is an XML Schema construct; we’re not creating new technology. 1724

2. This may be done for any type of element: of complex type of simple type, of no type, extensions, 1725
derivations, etc. 1726

3. XML Schema has very specific rules about how elements may be substituted. 1727

4. This need not be defined all at once. Additional derivations may be created as-needed, as the NIEM 1728
model progresses. 1729

14.3.1.2. Create root elements 1730

Create abstract, type-less elements to represent specific concepts. 1731

When two identical concepts are found that need separate representations, create an element as the root for the 1732
two. For example, we have two different codes for location country: 1733

<xsd:element 1734
 name="LocationCountryISO3166Alpha2Code" 1735
 type="iso_3166:CountryAlpha2CodeType"/> 1736
<xsd:element 1737
 name="LocationCountryFIPS10-4Code" 1738
 type="fips_10-4:CountryCodeType"/> 1739

These two elements are defined independently. There is no XML Schema entity to bring them together. Any type 1740
wishing to use both of these must include both of them explicitly. We can see that we can extract a unifying 1741
concept between these two elements: “Location Country Code”. We can create an element to represent this 1742
unified concept: 1743

<xsd:element 1744
 name="LocationCountryCode" 1745
 abstract="true"/> 1746

Once this element is defined, we may redefine the concrete country codes to be substitutable for this conceptual 1747
element: 1748

<xsd:element 1749
 name="LocationCountryISO3166Alpha2Code" 1750
 type="iso_3166:CountryAlpha2CodeType" 1751
 substitutionGroup="c:LocationCountryCode"/> 1752
<xsd:element 1753
 name="LocationCountryFIPS10-4Code" 1754
 type="fips_10-4:CountryCodeType" 1755
 substitutionGroup="c:LocationCountryCode"/> 1756

The use of the substitutionGroup attribute brings these elements together under LocationCountryCode. 1757

If we wish that a type contain codes for country locations, we may define it such that it includes only 1758
c:LocationCountryCode, and, and it will be able to carry any derived element, which have 1759
LocationCountryCode as their substitutionGroup. 1760

There are three important characteristics of LocationCountryCode: 1761

1. It is used as the substitutionGroup of more specific, concrete elements. 1762

2. It has no type. This means that any content may be carried within a LocationCountryCode element. 1763
Defining the element with no type allows other elements to be substituted for it, without restriction. If the 1764
element had a type, only elements of properly derived type would be substitutable for it. 1765

NIEM NDR Page 55 of 81
Draft Version 0.3
September 30, 2006

3. It is abstract. This means that a LocationCountryCode element is not allowed to appear within an 1766
XML document. This ensures that the LocationCountryCode element itself may not be used to carry 1767
content within XML instances. Since the element is untyped, it would be able to carry arbitrary content; 1768
having it abstract ensures that only well-defined data may be carried. 1769

At this point, we have defined (1) a set of concretely-defined elements, with representations to conform to specific 1770
requirements, and (2) A few abstract base elements, from which some of the concrete elements are derived. 1771
These two steps are currently implemented in NIEM 0.2.1. In NIEM 0.2.1, the abstract elements are not used by 1772
types. Types contain the specific concrete elements, instead of the abstract conceptual elements. 1773

14.3.1.3. Use Abstract Elements 1774

Have types in the reference schemas contain abstract elements. Use abstract elements, when available, in type 1775
definitions within reference schemas. Doing this for AddressType will appear as in Listing 2 (page 7). 1776

Keep in mind that this proposes using the abstract elements within reference schemas, but not necessarily within 1777
subset schemas. There are differences between the two: 1778

Listing 1: XML Schema definition using concrete elements 1779

<xsd:complexType name="AddressType"> 1780
 ... 1781
 <xsd:sequence> 1782
 ... 1783
 <xsd:element ref="c:LocationCountryFIPS10-4Code" ... 1784
 <xsd:element ref="c:LocationCountryISO3166Alpha2Code" ... 1785
 <xsd:element ref="c:LocationCountryISO3166Alpha3Code" ... 1786
 <xsd:element ref="c:LocationCountryISO3166NumericCode" ... 1787
 ... 1788
 </xsd:sequence> 1789
 ... 1790
</xsd:complexType> 1791

Listing 2: XML Schema definition using an abstract element 1792

<xsd:complexType name="AddressType"> 1793
 ... 1794
 <xsd:sequence> 1795
 ... 1796
 <xsd:element ref="c:LocationCountryCode" ... 1797
 ... 1798
 </xsd:sequence> 1799
 ... 1800
</xsd:complexType> 1801

1. Reference schemas are designed to be a superset of components exchanged in messages. 1802

2. Subset schemas are created such that any XML document that validates against the subset schema 1803
will validate against the reference schema. 1804

Subset schemas may be generated such that they substitute elements for the abstract elements, making them 1805
straightforward, sequenced versions of the definitions from the reference schemas. 1806

Use of the abstract elements within type definitions in the reference schema will have the following effects: 1807

1. Additional data types may be added for LocationCountryCode without modifying AddressType. 1808

2. New versions of existing data types may be added, without modifying AddressType. For example, an 1809
update to a code may be used immediately, without waiting for an update to AddressType, and without 1810
type extension and type substitution methods. 1811

NIEM NDR Page 56 of 81
Draft Version 0.3
September 30, 2006

3. The syntax of XML instances using element substitution is very straightforward, and generally requires 1812
less I.Q. in tools than does type substitution. 1813

For example, here is a sample instance that uses element substitution, as proposed: 1814

<DocumentCoverageTextAddress> 1815
 ... 1816
 <my:LocationCountryExtensionCode> 1817
 MJQ 1818
 </my:LocationCountryExtensionCode> 1819
 ... 1820
</DocumentCoverageTextAddress> 1821

Here is a sample instance based on an extension of AddressType. Note the use of the xsi:type attribute. 1822

<DocumentCoverageTextAddress 1823
 xsi:type="my:ExtensionAddressType"> 1824
 ... 1825
 <my:LocationCountryExtensionCode> 1826
 MJQ 1827
 </my:LocationCountryExtensionCode> 1828
 ... 1829
</DocumentCoverageTextAddress> 1830

Reference schemas that use element substitution may be subset in a concrete manner. Subset schemas may be 1831
created that do not use element substitution. For example, the definition of AddressType displayed in Listing 2 1832
(page 7) may be subset as in Listing 1 (page 7). 1833

Tiered definitions will be easier to create. For example, a core definition of “PersonType” may include an 1834
abstract definition for a residence, and concrete representations may be defined in domain schemas. 1835

This would be a refactoring process, creating abstract elements when multiple 1836
representations are needed, and using those elements in the appropriate types. 1837

14.4. Roles 1838

14.4.1. Description of Technique 1839

Make the distinction between something that is a specialization of an object, and something that is a role of an 1840
object. A role is an independently valid function of an object. A role may have a life cycle independent of any 1841
specific activity. Continue to use type inheritance for specialized objects. Adopt the concept of a role as an object 1842
that represents a specific function of another object. 1843

Define the following terms: 1844

Base object: Some object defined in the data model 1845

Role object: An object that represents a specific function of the base object 1846

Base object type: The XML Schema type of the base object 1847

Role object type: The XML Schema type of the role object 1848

RoleOf: A property of a role object. The RoleOf property specifies the base object, of which the role object is a 1849
function. 1850

Define schemas to account for roles: 1851

• For each class under consideration, determine if it defines a role object. 1852
• If it defines a role object, then: 1853

• Create a type to represent the class of object 1854

NIEM NDR Page 57 of 81
Draft Version 0.3
September 30, 2006

• Ensure the type is not derived from its base object type. 1855
• Add to the type an element RoleOf*Reference, referring to its base object type. 1856

14.4.2. Syntax Examples 1857

14.4.2.1. Instance 1858

<Person s:id="P1"> 1859
 <PersonName> 1860
 <PersonFullName>Fred Smith</PersonFullName> 1861
 <PersonFullName> 1862
</Person> 1863
 1864
<EnforcementOfficial> 1865
 <RoleOfPersonReference s:ref="P1"/> 1866
 <EnforcementOfficialBadgeID> 1867
 <ID>101101</ID> 1868
 </EnforcementOfficialBadgeID> 1869
</EnforcementOfficial> 1870

Use of the element RoleOfPersonReference indicates the type of the base object (in this case, a person of type 1871
PersonType). The type is not enforced by XML Schema validation. It is indicated, and could be enforced by XSLT 1872
scripts, but is not enforced by XML Schema validation. 1873

14.4.2.2. Type Definition 1874

<complexType name="EnforcementOfficialType"> 1875
 <complexContent> 1876
 <extension base="this:SuperType"> 1877
 <sequence> 1878
 <element ref="this:RoleOfePersonReference" 1879
 minOccurs="0" maxOccurs="unbounded"/> 1880
 ... 1881
 ... Additional elements defined for enforcement officials ... 1882
 ... 1883
 </sequence> 1884
 </extension> 1885
 </complexContent> 1886
</complexType> 1887

 1888

14.5. Associations 1889

Types will not be used only for representation of real-world objects. Types may also represent the association 1890
between objects. These are called association objects, and the types are association types. 1891

14.5.1. Introduction 1892

Data definitions within NIEM consist of types and properties. Properties represent connections between these 1893
types. These connections include: 1894

• Characteristics: Values that are specific to an object, and likely invariants of that object 1895
• Subparts: Objects that are smaller pieces of other objects 1896
• Relationships: Connections between objects, which may be numerous and changing 1897

Associations may be used to represent more complicated relationships than are possible with simple properties. 1898

NIEM NDR Page 58 of 81
Draft Version 0.3
September 30, 2006

14.5.2. Description of Technique 1899

14.5.2.1. Association Instance Syntax 1900

The syntax for an instance of an association is simple. Take, for example, the marriage of Adam and Barbara 1901
Smith: 1902

<MarriageAssociation> 1903
 <SpouseRef s:ref="A"/> 1904
 <SpouseRef s:ref="B"/> 1905
 <MarriageDate>1937-05-12</MarriageDate> 1906
 <DivorceDate>1973-06-02</DivorceDate> 1907
</MarriageAssociation> 1908

Interpreting the above XML fragment is straightforward: 1909

• There is an association that we call a marriage. You can tell it is an association, and not a thing, because 1910
it is named “something association”. 1911

• This marriage association has two spouses, a marriage date, and a divorce date. 1912
• One spouse is referenced as the object with the identifier A. The other spouse is identified by the ID B. 1913

These objects are specified elsewhere in the same XML instance: Object A is specified as follows: 1914

<Person s:id="A"> 1915
 <PersonName> 1916
 <PersonFullName>Adam Smith</PersonFullName> 1917
 </PersonName> 1918
</Person> 1919

Object B is specified as follows: 1920

<Person s:id="B"> 1921
 <PersonName> 1922
 <PersonFullName>Barbara Smith</PersonFullName> 1923
 </PersonName> 1924
</Person> 1925

Other elements in the association specify more information about the association: 1926

<MarriageDate>1937-05-12</MarriageDate> 1927
 <DivorceDate>1973-06-02</DivorceDate> 1928

The marriage date and divorce date are specific to the relationship between the two spouses, and so is a natural 1929
fit for an element of the association. 1930

14.5.2.2. Multiple Associations 1931

An object may be involved in multiple associations, each of which is represented independently. The examples 1932
below all occur within a single XML instance, and all refer to the same object with identifier A. In this case, the 1933
object A is a person, who is an employee, a spouse, a parent, and a child. 1934

NIEM NDR Page 59 of 81
Draft Version 0.3
September 30, 2006

<EmployerEmployeeAssociation> 1935
 <EmployeeRef s:id="A"/> 1936
 ... 1937
</EmployerEmployeeAssociation> 1938
 1939
<MarriageAssociation> 1940
 <SpouseRef s:id="A"/> 1941
 ... 1942
</MarriageAssociation> 1943
 1944
<ParentChildAssociation> 1945
 <ParentRef s:id="A"/> 1946
 ... 1947
</ParentChildAssociation> 1948
 1949
<ParentChildAssociation> 1950
 <ChildRef s:id="A"/> 1951
 ... 1952
</ParentChildAssociation> 1953

14.5.2.3. Schema for Associations 1954

The definition of an association is composed of several parts: 1955

1. An element that identifies the specific semantics of the association. 1956

2. A type for the association. The type may be have precise semantics, or may be a more generally 1957
defined type. 1958

14.5.2.3.1. Element definitions 1959

For each semantically distinct association, we define an element. Each element will have annotations indicating 1960
the specific meaning of the association. Such documentation is not shown in this document, but follows the 1961
guidelines established for NIEM 3.0. The syntax is standard XML Schema. For example, here is the definition for 1962
a parent-child element: 1963

<xs:element 1964
 name="ParentChildAssociation" 1965
 type="ParentChildAssociationType"/> 1966

We may wish to define a more-specific type of parent-child association. For example, an adoptive parent-child 1967
association: 1968

<xs:element 1969
 name="AdoptiveParentChildAssociation" 1970
 type="ParentChildAssociationType"/> 1971

If we wanted to make the type specific to an adoptive parent-child situation, then we define a new type, instead of 1972
reusing the general parent-child type. 1973

14.5.2.3.2. Association type definitions 1974

The definition of types for associations is done as needed, depending on the content of the types. We do not, as a 1975
rule, define a new type for each use or semantic definition of an association. Instead, we define them as 1976
necessary, to accommodate the content required. Here is an example definition for a type for the parent-child 1977
association: 1978

NIEM NDR Page 60 of 81
Draft Version 0.3
September 30, 2006

<xs:complexType name="ParentChildAssociationType"> 1979
 <xs:complexContent> 1980
 <xs:extension base="u:AssociationType"> 1981
 <xs:sequence> 1982
 <xs:element ref="this:ParentRef" minOccurs="0" 1983
 maxOccurs="unbounded"/> 1984
 <xs:element ref="this:ChildRef" minOccurs="0" 1985
 maxOccurs="unbounded"/> 1986
 </xs:sequence> 1987
 </xs:extension> 1988
 </xs:complexContent> 1989
</xs:complexType> 1990

The type definition has several parts: 1991

1. The name of the type is something "AssociationType”. This makes associations between objects 1992
distinct from other types of object definitions. 1993

2. The type is derived from another association type. This allows definition of type hierarchies for 1994
associations, and the definition of characteristics that are shared across multiple association types. 1995

3. The content of the association is a sequence of elements. The content of the association could be 1996
entirely related objects. The association could also contain characteristics of the associations, such as 1997
dates, names, identifiers, etc. 1998

14.5.2.4. Association type hierarchy 1999

The use of a type hierarchy is a useful feature, but should not be overused. In the examples so far, we have seen 2000
the following: 2001

1. A root association type, which helps group association types. 2002

2. An association type for a parent-child association. This type had a parent and a child. 2003

3. An association type for the marriage association. 2004

We may wish to insert into this list of types a root type for all interpersonal associations. This, however, may be 2005
over-design, due to several factors: 2006

1. What content would go into a generalized interpersonal association? All we would know is that the 2007
participants were people. A list of PersonRef elements is not very useful, and does not provide any 2008
semantics. The elements defined at this stage would have to be discarded to provide concrete meaning 2009
(such as spouse, parent, and child). 2010

2. What makes an association interpersonal? Is it just that there are two people participating in the 2011
association? Would an employer-employee be an interpersonal relationship, if the employer were an 2012
individual? Would an offender-victim relationship be interpersonal? What if the victim was an 2013
organization? 2014

3. Due to restrictions of XML Schema, we only have single-inheritance available in our toolbox; a type 2015
may have at most only a single parent. These sorts of place-holder types have limited usefulness, as they 2016
cannot be combined together to provide useful meaning. 2017

Use of type inheritance should be carefully considered. Keep in mind that common types may be inserted into the 2018
type hierarchy later in model development. 2019

14.5.3. Defining Associations 2020

A type should be defined as an association among objects (i.e. an AssociationType should be created to relate the 2021
objects) only if: 2022

NIEM NDR Page 61 of 81
Draft Version 0.3
September 30, 2006

1. The related objects are peers of one another and not simply a defining characteristic of or subpart of 2023
the other object(s). The term peers is used in a data modeling sense to mean that each object being 2024
related has its own set of characteristic property values independently of the other. 2025

2. Each related object can exist independently, that is, it does not depend on the existence of the 2026
association or the other object(s). In other words, none of the objects being related should lose meaning if 2027
separated from the others. 2028

An association may have its own characteristic attributes (properties) that either cause or result from the 2029
existence of the association. These attributes are characteristic of the association and define its nature or 2030
distinguish it from other associations and objects. 2031

New associations should be identified based on requirements or use within IEPDs, not simply because they exist, 2032
or may be used someday. 2033

14.6. Metadata 2034

This technique provides a general method for applying metadata and additional content to data objects. It enables 2035
users to create a block of metadata and apply it to objects in exchanges. An object states what metadata applies 2036
to it using the metadata attribute. 2037

In this example, we have a specific reported date for a person object: 2038

<Person s:metadata="MD"> 2039
 <PersonName> 2040
 <PersonGivenName>Adam</PersonGivenName> 2041
 <PersonSurName>Brooks</PersonSurName> 2042
 </PersonName> 2043
 <PersonBirthDate>1960-10-07</PersonBirthDate> 2044
</Person> 2045
 2046
<Metadata s:id="MD"> 2047
 <ReportedDate>2005-08-01</ReportedDate> 2048
</Metadata> 2049

This example has a few interesting features: 2050

• The person object refers to its metadata 2051

The reference uses the attribute s:metadata 2052

The reference is to the object with id MD 2053

• The metadata is a separate element 2054

The element is called Metadata. 2055

The metadata object has the id MD. 2056

• The ID is conveyed with the attribute s:id 2057

The metadata object contains an element ReportedDate 2058

This is the core syntax. There are additional features that make this technique interesting. 2059

14.6.1.1. Additional Cardinality of Metadata 2060

This technique allows additional cardinality in metadata. Under GJXMD 3.0, each attribute may appear at most 2061
once. Under this method, the number of times a piece of information occurs may be controlled via the usual 2062
methods for elements in types. 2063

NIEM NDR Page 62 of 81
Draft Version 0.3
September 30, 2006

<Metadata s:id="MD"> 2064
 <CommentText>Picked up on 12/20/02</CommentText> 2065
 <CommentText>Released up on 12/22/02</CommentText> 2066
 <CommentText>... additional comments ...</CommentText> 2067
</Metadata> 2068

14.6.1.2. Additional complexity of metadata 2069

This technique allows for metadata information to be defined as is usual for elements. Elements may be of simple 2070
types, reference types, or structured types: This example has the reporting person as a reference to another 2071
person object: 2072

<Metadata s:id="MD"> 2073
 <ReportingPersonRef s:ref="CD"/> 2074
</Metadata> 2075

The following example has a ReportingPersonName of a structured type: 2076

<Metadata s:id="MD"> 2077
 <ReportingPersonName> 2078
 <PersonGivenName>Charles</PersonGivenName> 2079
 <PersonSurName>Davis</PersonSurName> 2080
 </ReportingPersonName> 2081
</Metadata> 2082

14.6.1.3. Multiple blocks of metadata 2083

This technique enables the application of multiple blocks of metadata. For example, a user may wish to apply 2084
super type metadata as well as custom metadata. The instance for this may look like the following: 2085

<Person s:metadata="M1 M2"> 2086
 <PersonName> 2087
 <PersonGivenName>Adam</PersonGivenName> 2088
 <PersonSurName>Brooks</PersonSurName> 2089
 </PersonName> 2090
 <PersonBirthDate>1960-10-07</PersonBirthDate> 2091
</Person> 2092
 2093
<Metadata s:id="M1"> 2094
 <ReportedDate>2005-08-01</ReportedDate> 2095
</Metadata> 2096
 2097
<my:Metadata s:id="M2"> 2098
 <my:DatabaseID>2829019291</my:DatabaseID> 2099
</my:Metadata> 2100

This example shows two metadata blocks. Both are linked from the person object’s metadata attribute. The first 2101
metadata block indicates the reported date. The second indicates a custom, extension database identifier. 2102

This is made possible because of the way s:metadata is defined. The metadata attribute is of type 2103
xsd:IDREFS, which enables references to multiple targets. See [XMLSCHEMA-2], or [XML-INFOSET] for 2104
background on IDREFS. 2105

NIEM NDR Page 63 of 81
Draft Version 0.3
September 30, 2006

14.6.1.4. Reuse of Metadata 2106

This technique enables a block of metadata to be reused in multiple locations. A block of metadata may be 2107
defined once, and labeled (e.g. Source1, below). Then it may be reused by multiple objects. This creates a 2108
method similar to CSS classes, for identifying different types or sources of information. 2109

In the following example, there are two explicit sources: 2110

• Source 1 defines PersonName, PrimaryContactInformation, and PersonBirthDate 2111
• Source 2 defines Residence and Employment. 2112

<Person> 2113
 <PersonName s:metadata="Source1"> 2114
 <PersonGivenName>Adam</PersonGivenName> 2115
 <PersonSurName>Brooks</PersonSurName> 2116
 </PersonName> 2117
 <Residence s:metadata="Source2"> 2118
 2119
 </Residence> 2120
 <PrimaryContactInformation s:metadata="Source1"> 2121
 2122
 </PrimaryContactInformation> 2123
 <Employment s:metadata="Source2"> 2124
 2125
 </Employment> 2126
 <PersonBirthDate s:metadata="Source1"> 2127
 1960-10-07 2128
 </PersonBirthDate> 2129
</Person> 2130
 2131
<Metadata s:id="Source1"> 2132
 ... data specific to source 1 ... 2133
</Metadata> 2134
 2135
<Metadata s:id="Source2"> 2136
 ... data specific to source 2 ... 2137
</Metadata> 2138

14.6.1.5. Metadata Mechanism is Independent of NIEM 2139

Schema Release 2140

This technique makes code table schemas, and additional schemas independent of the main NIEM schemas. A 2141
code schema will import the structures namespace, from which it will obtain the attribute s:metadata. 2142

The following example shows a vehicle registration type code, which is of a type from NCIC. 2143

<VehicleRegistration> 2144
 <VehicleRegistrationPlateTypeCode s:metadata="PCMD"> 2145
 BU 2146
 </VehicleRegistrationPlateTypeCode> 2147
</VehicleRegistration> 2148
 2149
<Metadata s:id="PCMD"> 2150
 ... metadata relevant to the plate code ... 2151
</Metadata> 2152

The schema definition for this would not need to involve a per-release proxy. Instead, all versions of the NCIC 2153
schemas could be derived from the same structures schema, which provides the linking mechanism. The 2154
NIEM Schema would define the element, using the type from the NCIC schema: 2155

NIEM NDR Page 64 of 81
Draft Version 0.3
September 30, 2006

<element name="VehicleRegistrationPlateTypeCode" type="NCIC:LITType"/> 2156

The NCIC schema would create a simple type for the license plate code values: 2157

<xsd:simpleType name="LITSimpleType"> 2158
 <xsd:restriction base="xsd:token"> 2159
 <xsd:enumeration value="AM"/> 2160
 <xsd:enumeration value="AP"/> 2161
 ... 2162
 <xsd:enumeration value="VF"/> 2163
 <xsd:enumeration value="ZZ"/> 2164
 </xsd:restriction> 2165
</xsd:simpleType> 2166

The schema would then create a complex type. The complex type would be used as the type of elements. The 2167
type would be derived from a type in the structures namespace. This complex type would provide the 2168
s:metadata attribute. 2169

<complexType name="LITType"> 2170
 <simpleContent> 2171
 <restriction base="s:SimpleObjectType"> 2172
 <simpleType> 2173
 <restriction base="this:LITSimpleType"/> 2174
 </simpleType> 2175
 </restriction> 2176
 </simpleContent> 2177
</complexType> 2178

The definition of super type metadata in the main NIEM schema would indicate that it is applicable to all objects. 2179
This example applies to all Objects from the structures namespace. 2180

<complexType name="SuperTypeMetadataType"> 2181
 <annotation><appinfo> 2182
 <i:appliesTo i:name="Object" 2183
 i:namespace="http://www.it.ojp.gov/structures/2.0"/> 2184
 </appinfo></annotation> 2185
 <complexContent> 2186
 <extension base="s:MetadataType"> 2187
 <sequence> 2188
 <element ref="j:CommentText" 2189
 minOccurs="0" maxOccurs="unbounded"/> 2190
 <element ref="j:CriminalInformationIndicator" 2191
 minOccurs="0" maxOccurs="unbounded"/> 2192
 ... 2193
 <element ref="j:ReportedDate" 2194
 minOccurs="0" maxOccurs="unbounded"/> 2195
 </sequence> 2196
 </extension> 2197
 </complexContent> 2198
</complexType> 2199

14.6.1.6. Metadata May be Defined to Apply to Specific 2200

Types of Objects 2201

A metadata block may be defined to apply to a specific class of object. For example, a metadata block may apply 2202
to PersonType from the NIEM. This is expressed via appinfo in the schema: 2203

NIEM NDR Page 65 of 81
Draft Version 0.3
September 30, 2006

<complexType name="MyPersonMetadataType"> 2204
<annotation><appinfo> 2205
<i:appliesTo i:name="PersonType" 2206
i:namespace="http://niem.gov/niem/universal/0.2"/> 2207
</appinfo></annotation> 2208
<complexContent> 2209
<extension base="s:MetadataType"> 2210
<sequence> 2211
<element ref="my:MyPersonID" 2212
minOccurs="0" maxOccurs="unbounded"/> 2213
... 2214
</sequence> 2215
</extension> 2216
</complexContent> 2217
</complexType> 2218

Here we have a metadata block that defines the element MyPersonID, which may be applied to any 2219
PersonType object. 2220

14.6.1.7. Metadata may be defined to apply to links 2221

between objects 2222

A metadata block may be defined that applies to links between objects, not the objects themselves. Take as an 2223
example the special case of the name of a person: 2224

• The person is held in custody 2225
• The definition of the name comes from external records 2226
• The assignment of the name to the person is based on an eyewitness 2227

This presents three separate blocks of metadata: 2228

• The person has one block of metadata, stating that the data was entered via booking 2229
• The name has a block of metadata, stating when the data was validated, and the data source from which 2230

it was obtained 2231
• The assignment of the name to the person has additional metadata, indicating the witness. 2232

The metadata on the link is expressed with an attribute called linkMetadata. 2233

NIEM NDR Page 66 of 81
Draft Version 0.3
September 30, 2006

<Person s:metatadata="PM"> 2234
 <PersonName s:metadata="PNM" s:linkMetadata="LM"> 2235
 <PersonPrefixName>Mr.</PersonPrefixName> 2236
 <PersonGivenName>Xavier</PersonGivenName> 2237
 <PersonMiddleName>Laughton</PersonMiddleName> 2238
 <PersonSurName>McAlester</PersonSurName> 2239
 <PersonSuffixName>III</PersonSuffixName> 2240
 <PersonFullName> 2241
 Mr. Xavier Laughton McAlester, III 2242
 </PersonFullName> 2243
 <PersonNameInitialsText>XLM</PersonNameInitialsText> 2244
 </PersonName> 2245
</Person> 2246
 2247
<Metadata s:id="LM"> 2248
 <!-- data specific to the link between 2249
 the person and the person name --> 2250
 <CommentText>Reported by witness</CommentText> 2251
 <ReportingPersonName> 2252
 <PersonGivenName>Edward</PersonGivenName> 2253
 <PersonSurName>Fritz</PersonSurName> 2254
 </ReportingPersonName> 2255
 <ReportedDate>2002-10-01</ReportedDate> 2256
</Metadata> 2257
 2258
<Metadata s:id="PM"> 2259
 ... data specific to the person ... 2260
</Metadata> 2261
 2262
<Metadata s:id="PNM"> 2263
 ... data specific to the person name ... 2264
</Metadata> 2265

The attribute linkMetadata conveys information that can’t be conveyed by the metadata attribute. It tells 2266
applications that the metadata does not apply to either object. Instead, it applies to the connection between the 2267
two objects. 2268

14.7. Class Augmentation in NIEM 2269

14.7.1. Background 2270

Dependence on inheritance for domain-specific extensions creates several problems. These problems include: 2271

• Lack of reusability of domain-specific extensions. 2272
• Difficulty of defining extensions from multiple domains. 2273
• Overly-granular reuse of multiple-domain content: Reuse is at the element level, rather than the domain 2274

level. Types composed at that level are not interoperable. 2275

We require a method that allows application of data to existing types, while maximizing reuse of that data and 2276
avoiding the limitations associated with an inheritance-only based extension method. 2277

14.7.2. Terms and Concepts 2278

In this section, the following terms are used: 2279

• Base type: The type to which new data needs to be added. The base type may come from a NIEM core 2280
namespace or other NIEM-conformant namespaces. 2281

• Augmentation data: Data to be added to the base type. 2282

Augmentation of an object is the addition of domain- or model-specific information about a type. Augmentations 2283
may be provided by domains or NIEM-conformant application data models. 2284

For example, we will need "justice-domain" data about a person. This is different than creating a new kind of 2285
person. In the real world, a person for whom justice-related data exists is not a different type of person than one 2286

NIEM NDR Page 67 of 81
Draft Version 0.3
September 30, 2006

that has intel-related data about them. It is most likely that a person will have both intel-related and justice-related 2287
data about them. 2288

ZZZZZZZZZZZZZZZZ 2289

Error! Objects cannot be created from editing field codes. 2290

14.7.3. Method 2291

Use type extension to create IEPD-specific and domain model entities. Domains provide specially-defined 2292
elements as building blocks for IEPD-based extensions. These elements contain augmenting data. These 2293
elements are to be added to extensions of base types, to create derived types with augmented data. 2294

This method relies on definition of types using XML Schema type extension. This enables the use of type 2295
substitution, element substitution, and restriction. 2296

14.7.3.1. Examples 2297

Examples for this method use a simple set of data. There are three namespaces. Each namespace is created by 2298
a schema that is associated with NIEM. The properties used by the namespaces might be defined anywhere 2299
within NIEM. The namespaces used are: 2300

• Namespace "base": This namespace models a common or core set of definitions. It contains the base 2301
object. The base object is the object to which augmentations are affixed. The base object type is named 2302
base:BaseType. A container for the base object is element base:BaseContainer. BaseType has 2303
properties Property1, Property2, and Property3. 2304

• Namespace "domain": This namespace models a domain which defines augmentations to the base 2305
object. The augmentations are the elements Property4, Property5, and Property6. These 2306
augmentations are contained in a type named domain:DomainAugmentationType, when necessary. 2307

• Namespace "iepd". This models an IEPD, or other concrete message definition. It contains structures 2308
and types necessary for messages to use the methods under discussion. Some methods require IEPDs 2309
to define what structures are in use. Other methods do not allow IEPDs to make such specifications, and 2310
rely on other methods for selecting augmenting data for use. 2311

Diagram of data used for examples: 2312

 2313

The following instance example shows an IEPD-based extension, using elements to aggregate augmenting 2314
elements. This instance looks like the IEPD extension with groups, except that the augmenting elements are 2315
wrapped in a containing element. 2316

NIEM NDR Page 68 of 81
Draft Version 0.3
September 30, 2006

Sample XML instance for IEPD extension with elements: 2317

<iepd:IEPDDerivedContainer> 2318
 <base:Property1/> 2319
 <base:Property2/> 2320
 <base:Property3/> 2321
 <domain:DomainAugmentationContainer> 2322
 <domain:Property4/> 2323
 <domain:Property5/> 2324
 <domain:Property6/> 2325
 </domain:DomainAugmentationContainer> 2326
</iepd:IEPDDerivedContainer> 2327

The domain schema defines DomainAugmentationType as an augmentation of BaseType. 2328
DomainAugmentationType is declared to be an augmentation by being an extension of 2329
s:AugmentationType, which is described below. The augmentation container element is declared to be an 2330
augmentation of base:BaseType through the use of appinfo annotations. 2331

XML Schema for the domain namespace: 2332

<complexType name="DomainAugmentationType"> 2333
 <complexContent> 2334
 <extension base="s:AugmentationType"> 2335
 <sequence> 2336
 <element ref="domain:Property4"/> 2337
 <element ref="domain:Property5"/> 2338
 <element ref="domain:Property6"/> 2339
 </sequence> 2340
 </extension> 2341
 </complexContent> 2342
</complexType> 2343
 2344
<element 2345
 name="DomainAugmentationContainer" 2346
 type="domain:DomainAugmentationType" 2347
 substitutionGroup="s:Augmentation"> 2348
 <annotation> 2349
 <appinfo> 2350
 <i:appliesTo 2351
 i:namespace="http://examples.niem.gov/ns/aug/base" 2352
 i:name="BaseType"/> 2353
 </appinfo> 2354
 </annotation> 2355
</element> 2356

The proper use of such defined components may be easily verified through the use of schema verifiers. 2357

The IEPD schema creates an extension of BaseType, using type extension. Note the definition of a concrete 2358
container element, substitutable for base:BaseContainer. 2359

NIEM NDR Page 69 of 81
Draft Version 0.3
September 30, 2006

XML Schema fragment for the IEPD namespace: 2360

<complexType name="IEPDDerivedType"> 2361
 <complexContent> 2362
 <extension base="base:BaseType"> 2363
 <sequence> 2364
 <element ref="domain:DomainAugmentationContainer"/> 2365
 </sequence> 2366
 </extension> 2367
 </complexContent> 2368
</complexType> 2369
 2370
<element 2371
 name="IEPDDerivedContainer" 2372
 type="iepd:IEPDDerivedType" 2373
 substitutionGroup="base:BaseContainer"/> 2374

If the IEPD used multiple augmentations, they would appear within the sequence defined by the 2375
IEPDDerivedType. 2376

We may wish to make a rule that such augmented types must be declared as final, which would prevent them 2377
from being used as the basis for further type extension. 2378

The domain namespace, domain, uses new types and elements from the structures namespace. 2379

XML Schema fragment for the structures namespace: 2380

<complexType name="AugmentationType" abstract="true"> 2381
 <attribute ref="s:metadata"/> 2382
 <attribute ref="s:linkMetadata"/> 2383
</complexType> 2384
 2385
<element name="Augmentation" type="s:AugmentationType"/> 2386

These structures ensure that the domain-defined types are clearly an augmentation. The use of the 2387
"Augmentation" element provides a base for element substitution, as well as tagging elements as being 2388
augmentations. 2389

14.8. Using Non-NIEM XML Dialects with NIEM 2390

14.8.1. Introduction 2391

This section provides guidelines for NIEM users wishing to profile and use external standards with NIEM. In many 2392
cases employing particular standards in a NIEM Information Exchange Package Description (IEPD) may actually 2393
be preferred. 2394

There are a variety of commonly used standards that are currently represented in XML Schema. There must be a 2395
method for NIEM to promote and use these external standards where requirements dictate. 2396

This section focuses on a single use case: When NIEM IEPDs need to reference, import, and use components in 2397
an external standard schema or namespace that does not conform to NIEM Naming and Design Rules. It 2398
presents a methodology for including non-NIEM components in NIEM-conformant schemas. It enables data 2399
modeling efforts to build NIEM-conformant components from non-NIEM data objects. 2400

14.8.2. Background, and Terminology 2401

14.8.2.1. Schema Components 2402

We use the term “schema component” for any object constructed by XML Schema. Schema components are 2403
specified by the XML Schema specification. They include attribute declarations, type definitions, etc. Some of 2404
these components may not be referenced from imported XML Schemas, and so are not concerns of this 2405

NIEM NDR Page 70 of 81
Draft Version 0.3
September 30, 2006

discussion. They include attribute uses (which are distinct from attribute declarations) and use of model groups 2406
(distinct from model group definitions). 2407

From XML Schema Part 1: Structures, 2d Ed, W3C Recommendation, 28 October 2004: 2408

[Definition:] Schema component is the generic term for the building blocks that comprise the abstract 2409
data model of the schema. [Definition:] An XML Schema is a set of schema components. There are 13 2410
kinds of component in all, falling into three groups. The primary components, which may (type definitions) 2411
or must (element and attribute declarations) have names are as follows: 2412

• Simple type definitions 2413
• Complex type definitions 2414
• Attribute declarations 2415
• Element declarations 2416

The secondary components, which must have names, are as follows: 2417

• Attribute group definitions 2418
• Identity-constraint definitions 2419
• Model group definitions 2420
• Notation declarations 2421

Finally, the "helper" components provide small parts of other components; they are not independent of 2422
their context: 2423

• Annotations 2424
• Model groups 2425
• Particles 2426
• Wildcards 2427
• Attribute Uses 2428

This document is concerned only with the use of components that may be referenced from imported namespaces. 2429
Such components may be defined in one schema and used in another, when the referencing schema imports the 2430
schema that defines the component. This specification also does not pay attention to Notations and Identity 2431
constraints. Specifically, NIEM supports the referencing of the following types of components from external 2432
namespaces: 2433

• Simple type definitions 2434
• Complex type definitions 2435
• Attribute declarations 2436
• Element declarations 2437
• Attribute group definitions 2438
• Model group definitions 2439

14.8.2.2. NIEM Components 2440

We use the term “NIEM Component” for a schema component from a namespace that is NIEM-conformant, which 2441
follows the rules defined by the NIEM Naming and Design Rules (NDR) for NIEM conformance. The NIEM NDR 2442
provides a profile of W3C XML Schema, along with additional constructs to support creating a data model. In 2443
order to be NIEM-conformant, a namespace must claim conformance, and must follow specific rules about 2444
structure, XML Schema feature usage, naming, and documentation. 2445

NIEM conformance is determined at the namespace level, based on a reference schema for a particular 2446
namespace. To determine if a namespace is NIEM-conformant, the reference schema for the namespace is 2447
tested against a set of NIEM conformance rules. These rules include such things as: 2448

1. The schema must claim to be NIEM conformant. 2449

2. The schema must have a target namespace, over which the schema author has dominion. 2450

3. Schema components must be documented. 2451

NIEM NDR Page 71 of 81
Draft Version 0.3
September 30, 2006

4. Component documentation must take specific forms, including being supported with XML annotations 2452
from a NIEM-specific namespace, to support data modeling concepts. 2453

14.8.2.3. External Components 2454

We use the term “External Component” for a schema component from a namespace that does not follow the rules 2455
for NIEM conformance. 2456

Examples of external, non-NIEM standards include: 2457

• GML: Geography Markup Language. GML is a prime candidate for content that may be included in NIEM 2458
structures. 2459

• XHTML: Extensible HyperText Markup Language. This language would likely be used for exchanging 2460
simple structured text. 2461

• SAML: Security Assertion Markup Language. This is a likely language into which NIEM content will be 2462
embedded. Some SAML assertions will likely need to contain content defined by NIEM. 2463

14.8.3. Techniques 2464

External components are encapsulated in NIEM-conformant components. This introduces the concept of 2465
“external adapter” types. An external adapter type is a NIEM-conformant XML Schema complex type that wraps a 2466
set of external content. 2467

Error! Objects cannot be created from editing field codes. 2468

These adapter types and container elements are XML Schema components, and so are defined within the 2469
namespace of the schema currently being defined. 2470

This document specifies two constructs, which contain external content. The first is the external adapter type. 2471
This type is a NIEM-conformant type that contains attributes and elements from external namespaces. The 2472
second is the external container element. The container element is used when an external namespace provides 2473
top-level types for use, but does not provide appropriate top-level elements. In such a case, create a container 2474
element of the externally-provided type. Container elements are defined in NIEM-conformant namespaces, are 2475
named differently than regular NIEM-conformant elements, and are used in a more restricted way. 2476

Consistent with the fundamentals of NIEM, XML elements are used for semantics, and XML Schema types are 2477
used to contain necessary structures. Specific rules for definition of adapter components will take this approach, 2478
focusing on encapsulating external structures as NIEM-conformant types, within strongly-defined elements with 2479
specific semantics. 2480

If an external type needs to be extended for use, such extension should be done outside a NIEM-conformant 2481
namespace. These structures are intended to encapsulate external content. They are not indented to introduce 2482
extensions and modifications to external content into NIEM-conformant namespaces. If an application schema 2483
needs to be constructed to conform to an external standard, the schema should be created in a user-defined 2484
namespace, outside the NIEM-conformant namespaces. Then, those external components should be referenced 2485
by NIEM-conformant external adapter types and external container elements, as specified below. 2486

14.8.4. Details 2487

This section contains rules for using external standards in NIEM. The section uses terminology specified by 2488
[XML-INFOSET]. It also follows [XMLSCHEMA-1]. 2489

The namespace prefix “i” is used in this specification as if bound to the namespace URI 2490
“http://niem.gov/niem/appinfo/0.3”. This namespace is used by NIEM to describe information that 2491
occurs in the schema. Such information may be used by tools to test conformance and to support the data model 2492
definition of schema content. 2493

14.8.4.1. Namespace Conformance 2494

A namespace can be labeled as NIEM-conformant. Any namespace that is not NIEM-conformant is referred to as 2495
an external namespace. A namespace is NIEM-conformant if its reference schema follows NIEM conformance 2496

NIEM NDR Page 72 of 81
Draft Version 0.3
September 30, 2006

rules. A schema component must be in a NIEM-conformant namespace to be considered NIEM conformant. For 2497
any component of a schema to be conformant, the entire schema must be conformant. A NIEM-conformant 2498
schema must claim to be conformant. This occurs when the document element, the schema element, has a child 2499
annotation with a child appinfo with a child element i:conformant with the character child "true". In other 2500
words, the XPath "/xsd:schema/xsd:annotation/xsd:appinfo/i:conformant" has the value "true". 2501

<xsd:schema ...> 2502
 <xsd:annotation> 2503
 <xsd:appinfo> 2504
 <i:conformant>true</i:conformant> 2505
 </xsd:appinfo> 2506
 </xsd:annotation> 2507
</xsd:schema> 2508

This document only specifically addresses conformance issues for NIEM namespaces with respect to use of 2509
components from external namespaces. 2510

14.8.4.1.1. Non-Schema Namespaces 2511

An external namespace may be defined by a non-schema mechanism, such as DTD. In such a case, a 2512
placeholder schema would be created to represent the exact constructs referred to from the NIEM-conformant 2513
schema. A placeholder schema would not represent the deeper XML content of such namespaces. Instead, it 2514
would define placeholder elements and additional required constructs that are further defined by the non-XML 2515
Schema standard. 2516

For example, XHTML 1.0, which has no normative XML Schema definition, may be considered an external 2517
namespace. XHTML defines a namespace, and numerous elements within that namespace. Were a NIEM-2518
conformant schema specification to use the element "xhtml:ul" (an unordered list), it would use a reference. In 2519
order for schema validation to proceed normally, a schema would have to define that element. However, there is 2520
no such schema for Non-XML Schema specifications. The schema that is created to fulfill that role is the 2521
placeholder schema. Placeholder schemas should only represent the necessary components directly referred to 2522
from NIEM-conformant schemas. 2523

14.8.4.2. Importing of External Namespaces 2524

When NIEM namespaces are imported, the import statements are documented with a description of how the 2525
namespace is relevant to the namespace being defined. External (non-NIEM) namespaces should be 2526
documented with additional information, including: 2527

1. An indication that the imported namespace is not NIEM-conformant. 2528

2. The URI for a source of the reference schema for the namespace 2529

3. Version information 2530

4. Information about the body responsible for the standard, including: 2531

a. Contact information 2532

b. URI 2533

Additional metadata will be defined, as the NIEM NDR is further defined. For the time being, the metadata should 2534
be included as documentation elements. 2535

14.8.4.3. External Adapter Types 2536

A NIEM external adapter type is a complex type that has the following qualities: 2537

1. It is a special form of NIEM-conformant type. It may be used as the type of any NIEM-conformant 2538
element. 2539

NIEM NDR Page 73 of 81
Draft Version 0.3
September 30, 2006

2. An adapter type should compose a single semantic entity. That is, the subparts of the type should 2540
appear together because they form the definition for some concept, not simply as a way of wrapping a 2541
block of external content. 2542

3. An adapter type should be documented, as should any NIEM-conformant type. 2543

4. It contains content from an external namespace, including: 2544

a. Attributes from an external namespace 2545

b. Attribute groups from an external namespace 2546

c. A single XSD sequence containing zero or more of: 2547

(i) Elements from an external namespace 2548

(ii) Model Groups from an external namespace. These are named groups of elements defined 2549
schemas. 2550

(iii) External container elements, from a NIEM-conformant namespace. These are used when an 2551
external type must be used. They are defined below. 2552

5. It must extend the "ComplexObjectType" from the NIEM structures namespace 2553

6. It may not directly reference any other complex or simple types. Such types should be accessed via an 2554
external container element. 2555

7. It may not directly reference other NIEM content. Apart from the "ComplexObjectType", all content of an 2556
external adapter type should be external. 2557

8. The content it references may be from more than one external namespace. 2558

9. Each referenced external component must be individually documented, describing the meaning of the 2559
external component 2560

Additional annotations may be introduced as the NDR is developed. 2561

An example of the simple case shows an adapter type directly referring to an external element: 2562

<complexType name="PointType"> 2563
 <annotation> 2564
 <documentation> 2565
 SUMMARY OF TYPE GOES HERE 2566
 </documentation> 2567
 </annotation> 2568
 <complexContent> 2569
 <extension base="s:ComplexObjectType"> 2570
 <sequence> 2571
 <element ref="gml:Point"> 2572
 <annotation> 2573
 <documentation> 2574
 DESCRIPTION OF EXTERNAL ELEMENT GOES HERE 2575
 </documentation> 2576
 </annotation> 2577
 </element> 2578
 </sequence> 2579
 </extension> 2580
 </complexContent> 2581
</complexType> 2582

An alternate case occurs when types from an external standard need to be used, instead of elements. 2583

NIEM NDR Page 74 of 81
Draft Version 0.3
September 30, 2006

14.8.4.4. External Container Elements 2584

This specification introduces the term "External" as a suffix to element names in NIEM-conformant namespaces. 2585
An element with a name that ends in "External" is referred to as an external container element. Such an element 2586
is defined when a NIEM standard needs to reference XML Schema types from an external namespace. 2587

If an external namespace defines elements that are appropriate for use, the elements should be referenced by 2588
external adapter types, and external container elements are unnecessary. External container elements are 2589
needed to create container elements for types from external namespaces. 2590

An external container element has the following characteristics: 2591

1. Its name ends in "External". 2592

2. It is not a NIEM-conformant element. 2593

3. It may only be referred to by external adapter types. It is an error for any other component to refer to 2594
an external container element. 2595

4. The type of the element is a simple or complex type from an external namespace. The element 2596
definition may not reference any other external components. 2597

5. An external container element may not specify a substitution group. 2598

External container elements may not be referenced by standard conformant components. They may only be 2599
referenced by external adapter types. 2600

Here is an example definition of an external container element: 2601

<element name="PointExternal" type="gml:PointType"> 2602
 <annotation> 2603
 <documentation> 2604
 DESCRIPTION OF EXTERNAL TYPE GOES HERE 2605
 </documentation> 2606
 </annotation> 2607
</element> 2608

Note that the definition is very simple: it provides a container for an external type, and is clearly labeled as non-2609
NIEM content by the suffix "External". 2610

The external container element may be used by an adapter type, as the following example shows: 2611

<complexType name="PointType"> 2612
 <annotation> 2613
 <documentation> 2614
 SUMMARY OF TYPE GOES HERE 2615
 </documentation> 2616
 </annotation> 2617
 <complexContent> 2618
 <extension base="s:ComplexObjectType"> 2619
 <sequence> 2620
 <element ref="this:PointExternal"/> 2621
 </sequence> 2622
 </extension> 2623
 </complexContent> 2624
</complexType> 2625

External container elements are not NIEM-conformant data model components. Instead, they create container for 2626
external types. They are clearly identified external by their names (suffixed with "External"). External elements 2627
(that come from non-NIEM namespaces) are clearly identified as external by their namespaces. 2628

NIEM NDR Page 75 of 81
Draft Version 0.3
September 30, 2006

Appendix A. Supporting Files 2629

Appendix A.1. Schema for Structures Namespace 2630
<?xml version="1.0" encoding="UTF-8"?> 2631
<schema 2632
 attributeFormDefault="qualified" 2633
 targetNamespace='http://www.it.ojp.gov/jxdm/structures/1' 2634
 xmlns:this='http://www.it.ojp.gov/jxdm/structures/1' 2635
 xmlns='http://www.w3.org/2001/XMLSchema'> 2636
 2637
 <import 2638
 namespace="http://www.w3.org/XML/1998/namespace" 2639
 schemaLocation="xml.xsd"/> 2640
 2641
 <attribute name="sequenceID" type="integer"> 2642
 2643
 <complexType name="ReferenceType" final="true" block="true"> 2644
 <attribute name="reference" type="IDREF" use="required"/> 2645
 <attribute ref="xml:id" use="optional"/> 2646
 </complexType> 2647
 2648
 <element name="Relationship"> 2649
 <complexTypefinal="true" block="true"> 2650
 <attribute name="relationshipURI" type="anyURI" 2651
 use="required"/> 2652
 <attribute name="relationshipObject" type="IDREF" 2653
 use="required"/> 2654
 <attribute name="relationshipSubject" type="IDREF" 2655
 use="required"/> 2656
 <attribute ref="xml:id" use="optional"/> 2657
 </complexType> 2658
 </element> 2659
 2660
</schema> 2661

Appendix A.2. Schema for entity appinfo namespace 2662
<?xml version="1.0" encoding="UTF-8"?> 2663
<schema 2664
 targetNamespace="http://www.it.ojp.gov/jxdm/appinfo/2" 2665
 version="1.0" 2666
 xmlns:this="http://www.it.ojp.gov/jxdm/appinfo/2" 2667
 xmlns="http://www.w3.org/2001/XMLSchema"> 2668
 2669
 <element name="info"> 2670
 <complexType> 2671
 <sequence> 2672
 <element form="qualified" maxOccurs="unbounded" 2673
 minOccurs="0" name="base"> 2674
 <complexType> 2675
 <attribute form="qualified" name="namespace" 2676
 type="anyURI" use="required"/> 2677
 <attribute form="qualified" name="name" 2678
 type="NCName" use="required"/> 2679
 </complexType> 2680
 </element> 2681
 </sequence> 2682
 <attribute form="qualified" name="deprecated" 2683
 type="boolean" use="required"/> 2684
 </complexType> 2685
 </element> 2686
 2687

NIEM NDR Page 76 of 81
Draft Version 0.3
September 30, 2006

</schema> 2688
 2689

Appendix A.3. Schema for xml namespace 2690
<?xml version="1.0" encoding="UTF-8"?> 2691
<schema 2692
 targetNamespace="http://www.w3.org/XML/1998/namespace" 2693
 xmlns="http://www.w3.org/2001/XMLSchema"> 2694
 2695
 <attribute name="id" type="ID"/> 2696
 2697
</schema> 2698

NIEM NDR Page 77 of 81
Draft Version 0.3
September 30, 2006

Appendix B. Normative Abbreviations 2699
This is a table of normative abbreviations, acronyms, and word truncations to be used as specified in . 2700
Term Definition
ID Identifier
ORI Orion value
 2701

NIEM NDR Page 78 of 81
Draft Version 0.3
September 30, 2006

Appendix C. References 2702

[Global]: http://it.ojp.gov/global 2703

[OED]: Oxford English Dictionary, Second Edition, 1989. Available at http://dictionary.oed.com/ 2704

[OJP]: OJP Information Technology Website, at http://www.it.ojp.gov/jxdm. 2705

[RDFConcepts]: http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/ 2706

RDF data model: http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#section-data-model 2707

[RFC2119]: S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, 2708
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997. 2709

[RFC3986]: Berners-Lee, T., et al: Uniform Resource Identifier (URI): Generic Syntax, Request for Comments 2710
3986, January 2005. Available from http://www.ietf.org/rfc/rfc3986.txt 2711

[SchemaForXMLSchema]: The schema for XML Schema is available at 2712
http://www.w3.org/2001/XMLSchema.xsd 2713

[XML]: Extensible Markup Language (XML) 1.0 (Third Edition), W3C Recommendation 04 February 2004, 2714
available at http://www.w3.org/TR/2004/REC-xml-20040204/ 2715

EBNF notation is described at #sec-notation. 2716

IDREF constraint: http://www.w3.org/TR/2004/REC-xml-20040204/#idref 2717

[XML-ID]: xml:id Version 1.0, W3C Proposed Recommendation 12 July 2005, available from 2718
http://www.w3.org/TR/2005/PR-xml-id-20050712/. 2719

[XMLInfoSet]: XML Information Set (Second Edition), W3C Recommendation 4 February 2004. Available from 2720
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/ 2721

[XMLNamespaces]: Namespaces in XML, World Wide Web Consortium 14-January-1999, available at 2722
http://www.w3.org/TR/1999/REC-xml-names-19990114/ 2723

NCName: http://www.w3.org/TR/REC-xml-names/#NT-NCName 2724

[XMLNamespacesErrata]: Namespaces in XML Errata, 6 December 2002, available from 2725
http://www.w3.org/XML/xml-names-19990114-errata 2726

[XMLSchemaDatatypes]: XML Schema Part 2: Datatypes Second Edition, W3C Recommendation 28 October 2727
2004, available at http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/ 2728

[XMLSchemaStructures]: XML Schema Part 1: Structures Second Edition, W3C Recommendation 28 October 2729
2004, available at http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/ 2730

[XML-INFOSET]: XML Information Set (Second Edition), W3C Recommendation 4 February 2004, Available at 2731
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/ 2732

IDREFS at #infoitem.attribute 2733

[XMLSCHEMA-1]: XML Schema Part 1: Structures Second Edition, W3C Recommendation 28 October 2004. 2734
Available at http://www.w3.org/TR/2004/REC-xmlschema-1-20041028 2735

[XMLSCHEMA-2]: XML Schema Part 2: Datatypes Second Edition, W3C Recommendation 28 October 2004. 2736
Available at http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/ 2737

IDREFS at #IDREFS 2738

 2739

NIEM NDR Page 79 of 81
Draft Version 0.3
September 30, 2006

Appendix D. Revision History 2740
Revision Date Modifications
0.4 2005-08-23 Removed in-document tasks. Formatted for public review.
0.3 2005-08-10 Processed comments by XSTF
0.2 2005-07-21 Remove email addresses. Inserted Appendix B for acronyms.
0.1 2005-07-21 Initial draft by Webb Roberts

NIEM NDR Page 80 of 81
Draft Version 0.3
September 30, 2006

Appendix E. Glossary 2741

This glossary is informative only. No definitions herein should be considered normative. 2742

NIEM: Global Justice XML Data Model 2743

NIEM-conformant reference schema: A schema that acts as the definition for its namespace. It maintains 2744
documentation that allows it to be shared and interoperable as a complete NIEM component. 2745

NIEM-conformant schema: A schema that maintains the XML Schema syntax requirements of NIEM, while not 2746
necessarily containing all content for a namespace, and not necessarily containing all documentation 2747
needed for full interoperability and NIEM integration. NIEM-conformant reference schemas and NIEM-2748
conformant subset schemas fall under this category, as do extension schemas and document schemas. 2749

NIEM-conformant subset schema: A schema, based on a NIEM-conformant reference schema that is built to 2750
validate a subset of the content of the full reference schema. It is built from a reference schema using 2751
rules specified in this document. 2752

NIEM constraint schema: A schema, used in conjunction with NIEM-conformant schema, that applies a set of 2753
user-designated constraints on XML data instances. 2754

Global: The Global Justice Information Sharing Initiative. For more information, see [Global] 2755

IEPD: Information Exchange Package Description 2756

NIEM: National Information Exchange Model 2757

XSTF: The Global XML Structure Task Force, the organization supervising the NIEM 2758

 2759

NIEM NDR Page 81 of 81
Draft Version 0.3
September 30, 2006

Appendix F. Notices 2760

This document and the information contained herein is provided on an “AS IS” basis and the authors DISCLAIM 2761
ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE 2762
USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES 2763
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. 2764

